自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(108)
  • 收藏
  • 关注

原创 SCI指导JCR1区全局优化/数值优化/图像分割/分类/预测/路径规划/tsp/无线网络部署/光伏发电/图像增强/特征选择

SCI指导,JCR1区,单人/拼团,包括但不局限于:一种改进xx算法用于,全局优化/数值优化/图像分割/分类/预测/路径规划/tsp/无线网络部署/光伏发电/图像增强/特征选择。

2025-04-09 11:29:16 860

原创 顶刊复现,全网首发,最新版本改进LSHADE-SPACMA

原文复现,全网首发!2025年1月最新发表算法,改进CEC2017竞赛优胜算法LSHADE-SPACMA,Modified LSHADE-SPACMA with new mutation strategy and external archive mechanism for numerical optimization and point cloud registration,发表于顶级期刊Artificial Intelligence Review,效果极佳!改进版本竞赛算法非常稀少!

2025-01-09 12:01:41 755

原创 kmeans聚类(matlab代码)

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。利用同等价值的matlab代码兑换博主的matlab代码。5.计算并绘制出不同聚类数下的轮廓系数曲线。2.进行K均值计算(需要设置聚类簇数K)K-means聚类 matlab代码。代码能正常运行时不负责答疑!电子产品,一经出售,概不退换。1.导入数据集.xlsx。3.计算出轮廓系数。4.绘制出聚类效果。

2025-05-28 11:06:15 505

原创 DBSCAN聚类 (matlab代码)

2.进行DBSCAN聚类(需设定邻域半径Esp值和邻域内最小样本数Minpts)先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。利用同等价值的matlab代码兑换博主的matlab代码。DBSCAN聚类 matlab代码。代码能正常运行时不负责答疑!电子产品,一经出售,概不退换。1.导入数据集.xlsx。5.绘制出聚类可视化效果。3.提取每个类别的索引。

2025-05-27 11:35:06 169

原创 乡村地区无人机医药配送路径规划与优化仿真

先选择适合在该地区配送医药物资环境下的载具材料、负重能力、工作能源、机翼数量及种类等,再对该地区所有配送点分布进行聚类分析,划分好区域后再落实到无人机的飞行轨迹上,文中使用改进遗传算法,同时结合人工势场法进行避障。本代码意在通过对无人机路径规划和载具选择进一步帮助乡村振兴,提高农村卫生条件,让患者足不出户就可享受到医疗服务,旨在完善乡村基础设施建设,积极响应国家“十四五”规划的号召。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。电子产品,一经出售,概不退换。

2025-05-15 11:30:01 464

原创 贝叶斯优化RF预测模型

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。利用同等价值的matlab代码兑换博主的matlab代码。算法设计、毕业设计、期刊专利!代码能正常运行时不负责答疑!电子产品,一经出售,概不退换。

2025-04-29 11:46:11 323

原创 贝叶斯优化BiLSTM预测(matlab代码)

贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。可视化结果:代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。

2025-04-29 11:34:36 286

原创 LLVIP、KAIST、M3FD数据集

(可见光+红外,双模态数据集,已配准已对齐已清洗,已处理为txt格式,YOLO可直接训练)先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。利用同等价值的matlab代码兑换博主的matlab代码。算法设计、毕业设计、期刊专利!LLVIP、KAIST、M3FD数据集。电子产品,一经出售,概不退换。

2025-04-28 11:57:24 375

原创 结合大语言模型的机械臂抓取操作学习

先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。结合大语言模型的机械臂抓取操作学习(完整ppt和代码)无视频。利用同等价值的matlab代码兑换博主的matlab代码。算法设计、毕业设计、期刊专利!代码能正常运行时不负责答疑!电子产品,一经出售,概不退换。

2025-04-28 11:15:42 421

原创 贝叶斯优化GAM回归(matlab代码)

结果展示:在代码的最后,通过打印输出和图形展示了模型在训练集、验证集、测试集上的预测结果,以及相应的评价指标,使得用户能够直观地了解模型的性能和效果。数据处理:对加载的数据进行了预处理操作,包括数据划分、Zscore标准化等,使得数据具备了适合训练的格式和特征,提高了算法的准确性和稳定性。模块化设计:代码被划分为多个模块,每个模块执行特定的任务,例如加载数据、据划分、参数设置、算法处理等,使得代码结构清晰,易于理解和维护。平均绝对误差(MAE)均方根误差(RMSE)均方根误差(RMSE)

2025-04-25 11:48:56 499

原创 贝叶斯优化CNN回归预测(matlab代码)

贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性,

2025-04-24 11:37:55 414

原创 贝叶斯优化CNN-LSTM回归预测(matlab代码)

贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。均方根误差(RMSE)

2025-04-23 15:46:45 272

原创 贝叶斯优化CNN-GRU回归预测(matlab代码)

贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。均方根误差(RMSE)

2025-04-22 12:18:58 339

原创 贝叶斯优化CNN-BiLSTM回归预测(matlab代码)

贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。均方根误差(RMSE)

2025-04-21 11:51:47 375

原创 贝叶斯优化BiLSTM回归预测(matlab代码)

可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。模块化结构:代码将整个流程模块化,使得代码更易于理解和维护,不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数设置:通过指定参数的值,如贝叶斯迭代次数 BO iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。参数化设计:代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性。

2025-04-18 13:27:05 329

原创 SVM-RF回归预测matlab代码

模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。算法设计、毕业设计、期刊专利!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)

2025-04-17 11:00:39 369

原创 MLP回归预测(matlab代码)

结果展示:在代码的最后,通过打印输出和图形展示了模型在训练集、验证集、测试集上的预测结果,以及相应的评价指标,使得用户能够直观地了解模型的性能和效果。数据处理:对加载的数据进行了预处理操作,包括数据划分、Zscore标准化等,使得数据具备了适合训练的格式和特征,提高了算法的准确性和稳定性。模块化设计:代码被划分为多个模块,每个模块执行特定的任务,例如加载数据、数据划分、算法处理等,使得代码结构清晰,易于理解和维护。算法处理:使用了MLP 回归模型进行数据建模和预测,提高了模型的准确性和泛化能力。

2025-04-16 14:00:49 186

原创 MLP-SVM回归预测(matlab代码)

模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。算法设计、毕业设计、期刊专利!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)

2025-04-15 11:14:56 306

原创 MLP-RF随机森林回归预测(matlab代码)

模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。利用同等价值的matlab代码兑换博主的matlab代码。数据集划分为训练集、验证集、测试集,比例为8:1:1。MLP-RF随机森林回归预测(matlab代码)

2025-04-14 11:54:20 238

原创 MLP-DT决策树回归预测(matlab代码)

模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。算法设计、毕业设计、期刊专利!平均相对误差(MAPE)平均绝对误差(MAE)均方根误差(RMSE)

2025-04-12 15:29:43 240

原创 Qt平台+三维建模+动画演示+工业风展示

支持嵌入式 / Windows / Linux 多平台部署,适用于工业可视化、医疗系统、人机交互、设备控制等多种场景。三维建模不止于形,界面定制不止于皮,实时交互不止于快。🎨 UI/UX全流程定制 从原型到成品,一站搞定。⚡ 实时交互系统 支持多线程响应、动态数据绑定。🧊 三维建模 + 动画演示 + 工业风展示。🛠 项目上新,服务已启。🔧 Qt平台 精准开发。

2025-04-11 11:23:59 435

原创 贝叶斯优化最近邻分类(matlab代码)

结果展示:代码在最后通过绘图的方式展示了分类结果和混淆矩阵,直观地展示了模型的性能和分类效果,有助于对模型进行评估和改进。算法选择:代码选择了适当的算法进行分类任务,通过贝叶斯迭代和十折交叉验证等方法进行模型训练和评估,提高了模型的泛化能力。数据处理:代码对数据进行了规范化处理,包括标准化和数据集划分,使得数据具有一致的尺度和格式,有利于算法的训练和测试。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。代码有详细中文介绍。

2025-04-10 12:22:50 288

原创 贝叶斯优化随机森林分类(matlab代码)

参数设置:代码中设置了贝叶斯迭代次数 BO_iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。结果展示: 在算法处理块结束后,展示了模型在训练集、验证集和测试集上的准确率,以及程序的运行时长。数据标准化: 对数据进行了 Zscore 标准化处理,使得数据的均值为 0,标准差为 1,有利于提高模型的收敛速度和性能。数据处理: 在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-04-09 11:23:01 474

原创 贝叶斯优化朴素贝叶斯分类(matlab代码)

代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混淆矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。通过朴素贝叶斯算法进行分类任务的处理,采用了自动优化超参数的方法,从而更好地适应数据集,并提高了模型的性能。matlab代码数据为Excel分类数据集数据。

2025-04-08 11:18:52 386

原创 贝叶斯优化决策树分类(matlab代码)

结果可视化: 代码中包含了对模型预测结果的可视化,包括了真实类别和预测类别的对比图以及测试集的混淆矩阵,有助于直观地了解模型的表现。模块化的结构: 代码分为清除命令窗口、数据加载、数据划分、参数设置、算法处理块、结果分析和绘图块等模块,使得代码更易于理解和维护。模型评估: 使用了十折交叉验证的方法对模型进行评估,考虑到了模型的泛化能力,有助于更客观地评估模型的性能。数据预处理: 在数据划分之前,对数据进行了Z-score标准化处理,有助于提高模型的收敛速度和准确率。测试集准确率:0.86667。

2025-04-03 11:30:07 357

原创 贝叶斯优化SVM分类(matlab代码)

代码中通过十折交叉验证等方法评估了模型的性能,计算了训练集、验证集和测试集的准确率,并输出了十折验证准确率和运行时长。此外,还通过绘制分类情况图和混矩阵对模型的分类效果进行了可视化展示,帮助更直观地了解模型的性能和分类结果。代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。通过SVM算法进行分类任务的处理,采用了自动优化超参数的方法,从而更好地适应数据集,并提高了模型的性能。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-04-02 11:43:06 486

原创 贝叶斯优化LSTM分类预测(matlab代码)

参数设置:代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。结果展示: 在算法处理块结束后,展示了模型在训练集、验证集和测试集上的准确率,以及程序的运行时长。数据标准化: 对数据进行了 Zscore 标准化处理,使得数据的均值为 0,标准差为 1,有利于提高模型的收敛速度和性能。数据处理: 在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-04-01 11:13:48 548

原创 贝叶斯优化GRU分类预测(matlab代码)

可视化结果:代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。数据处理:在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-03-27 11:02:50 505

原创 改进mopos进行多目标巡检(matlab代码)

在原始的 MOPSO 算法中,粒子局部最优引导的选择方式为:在第t次迭代时,从当前种群\中通过均匀随机抽样的方式挑选一个粒子作为局部最优引导粒子,从整数集合中进行均匀随机抽样。这种选择方式虽能使粒子在一定程度上探索解空间,但由于选取的粒子随机性较大,可能并非是当前种群中具有优良特性的解,导致粒子后续的搜索方向缺乏足够的引导性,影响算法收敛速度与寻优精度。通过上述改进点的引入,改进后的 MOPSO 算法在解决多目标优化问题时具有更好的性能。利用同等价值的matlab代码兑换博主的matlab代码。

2025-03-26 12:10:09 416

原创 极光优化PLO-Transformer-LSTM多变量时序

正是由于Transformer模型采用并行机制,本身是适用于自然语言处理任务,可以很好地实现机器翻译的任务,当Transformer模型应用于时序数据预测时,输入序列可能会存在时间信息的缺失;而在时间序列预测中,模型的输入是已知的历史时间数据,而输出是未来时间的预测值,在这种情况下,是不需要解码器的注意力层结构的。(五)在我们的实验中,原始Transformer模型设置最大训练次数为50次,初始学习率为0.01,L2正则化系数为0.005,自注意力机制中的头数为4,因此每个头的键的通道数为4*32。

2025-03-26 12:06:02 625

原创 贝叶斯优化CNN分类预测(matlab代码)

可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。参数设置:代码中设置了贝叶斯迭代次数 BO iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。数据处理:在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-03-26 11:43:16 202

原创 WGAN对抗生成数据(matlab)代码

该模型引入了梯度惩罚(Gradient Penalty)技术,有效提升了训练过程的稳定性,同时提高了生成样本的质量。WGAN 的提出,主要是为了解决原始生成对抗网络(GAN)在训练时不稳定以及出现模式崩溃等问题。由于数据量不大,也可以承接调试工作。在数据扩充方面,当面临数据量不足的状况时,可利用 WGAN 梯度惩罚方法合成新的数据样本,用于模型训练。先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。算法设计、毕业设计、期刊专利!WGAN生成对抗网络,数据生成,样本生成程序。

2025-03-25 11:39:37 396

原创 贝叶斯优化BiLSTM分类(matlab代码)

参数设置:代码中设置了贝叶斯迭代次数 BO_iter,通过调整这个参数,可以控制贝叶斯优化算法的迭代次数,从而更好地优化模型的超参数。结果展示: 在算法处理块结束后,展示了模型在训练集、验证集和测试集上的准确率,以及程序的运行时长。数据标准化: 对数据进行了 Zscore 标准化处理,使得数据的均值为 0,标准差为 1,有利于提高模型的收敛速度和性能。数据处理: 在数据加载后,对数据进行了划分,包括训练集、验证集和测试集,这有助于评估模型的泛化能力。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-03-25 10:50:00 401

原创 CNN-LSTM分类预测(matlab代码)

可视化结果: 代码中包含了对训练过程和预测结果的可视化,包括损失函数的曲线、真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性。利用同等价值的matlab代码兑换博主的matlab代码。数据集划分为训练集、验证集、测试集,比例为8:1:1。

2025-03-24 11:03:44 437

原创 SA模拟退火算法优化高斯回归回归预测matlab代码

数据处理流程遵循标准化规范,通过 Z-score 标准化技术对数据进行归一化处理,并实施严格的训练 - 验证 - 测试集划分策略,为模型训练的准确性和可靠性提供了保障。结果可视化模块通过绘制多组对比曲线,直观呈现模型在不同阶段的预测性能,包括训练集、验证集和测试集的真实值与预测值的动态对比,便于直观评估算法效能。系统设计采用分层架构模式,代码逻辑划分为数据预处理、参数配置、算法实现和结果可视化四大功能模块,显著提升了代码的可维护性与可读性。利用同等价值的matlab代码兑换博主的matlab代码。

2025-03-24 10:52:48 529

原创 SSA麻雀搜索算法优化随机森林回归预测(matlab代码)

通过绘制 SSA 寻优过程的收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,以直观的方式展示了模型的预测效果。随后,将数据合理地划分成训练集、验证集和测试集,这一系列操作有效保障了模型训练的准确性与可靠性,为后续的分析与预测奠定了坚实基础。这种结构极大地提升了代码的可读性与可维护性,便于后续的开发与管理。麻雀搜索算法(Sparrow Search Algorithm,简称 SSA)是于 2020 年被提出的一种新兴群智能优化算法,其灵感主要源自麻雀的觅食行为与反捕食行为。

2025-03-21 11:47:03 554

原创 SSA麻雀搜索算法优化决策树回归预测(matlab代码)

在结果呈现上,通过绘制 SSA 寻优过程的收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,实现了结果的可视化。首先对数据进行了标准化处理,采用了 Zscore 标准化方法,而后将数据精准地划分为训练集、验证集和测试集,这些步骤有效保障了模型训练的准确性和可靠性。根据功能模块,代码被清晰地划分成数据准备、参数设置、算法处理以及结果展示等几个部分,这一设计极大地提高了代码的可读性与可维护性。为了保证模型训练的有效性,数据集按照 8:1:1 的比例被合理划分为训练集、验证集和测试集。

2025-03-20 11:09:31 367

原创 SSA优化MLP回归预测(matlab代码)

在结果呈现方面,采用了可视化的方式。通过绘制 SSA 寻优过程的收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,能够以直观的形式展示模型的预测效果,让用户可以更轻松地理解算法和模型的性能表现。具体清晰地分为数据准备、参数设置、算法处理模块以及结果展示等几个部分,这种结构极大地提升了代码的可读性,同时也让代码的维护变得更加轻松便捷。首先对数据进行了标准化处理,运用了 Zscore 标准化方法,随后将数据准确划分为训练集、验证集和测试集,这些操作有效保障了模型训练过程中的准确性和可靠性。

2025-03-19 11:30:25 522

原创 SSA麻雀搜索算法优化GAM回归预测(matlab代码)

通过精心绘制 SSA 寻优过程的收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,以直观的方式呈现了模型的预测效果,让用户能够迅速且清晰地理解算法以及模型的性能表现,为进一步的评估和优化提供了有力支持。对数据进行了全面的标准化处理,其中包括 Zscore 标准化方法,并且严格按照比例将数据划分为训练集、验证集和测试集,这一系列操作有效保障了模型训练的准确性与可靠性,为后续的分析和预测奠定了坚实基础。在数据处理方面,将数据集按 8:1:1 的比例科学地划分为训练集、验证集以及测试集。

2025-03-18 12:27:17 710

原创 SSA麻雀搜索算法优化GRNN回归预测(matlab代码)

在结果可视化方面,通过绘制 SSA 寻优过程收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,将模型的预测效果直观地呈现出来,方便用户理解算法和模型的性能表现。首先运用 Zscore 标准化方法对数据实施标准化处理,之后再将其划分为训练集、验证集和测试集,如此操作有助于确保模型训练具备较高的准确性与可靠性。麻雀搜索算法(Sparrow Search Algorithm,SSA)作为一种在 2020 年新提出的群智能优化算法,其设计理念主要源自麻雀的觅食行为以及反捕食行为。

2025-03-17 11:22:54 433

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除