贝叶斯优化方法则采用贝叶斯思想,通过不断探索各种参数组合的结果,根据已有信息计算期望值,并选择期望值最大的组合作为最佳策略,从而在尽可能少的实验次数下达到最优解。
数据为Excel股票预测数据。
数据集划分为训练集、验证集、测试集,比例为8:1:1
模块化结构: 代码将整个流程模块化,使得代码更易于理解和维护。不同功能的代码块被组织成函数或者独立的模块,使得代码逻辑清晰,结构化程度高。
参数化设计: 代码中许多常用的参数被设定为变量,方便用户根据实际情况进行调整和修改,提高了代码的灵活性和可重用性。
参数设置:通过指定参数的值,如贝叶斯迭代次数 BO_iter,使得用户可以灵活地调整算法的参数,以获得更好的性能。
可视化结果: 代码中包含了对训练过程和预测结果的可视化,真实标签与预测标签的对比等,有助于直观地评估模型的性能和结果的准确性。
同时输出多个评价指标:
平均绝对误差(MAE)
平均相对误差(MAPE)
均方误差(MSE)
均方根误差(RMSE)
R方系数(R2)
代码有中文介绍。
代码能正常运行时不负责答疑!
电子产品,一经出售,概不退换
算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。