3种策略原创改进,有说明文档。
在多目标粒子群优化(MOPSO)算法框架下,粒子局部最优引导选择机制对算法的搜索性能有着关键影响。传统的 MOPSO 算法在迭代进程中,对于粒子局部最优引导的选取存在一定局限性。
在原始的 MOPSO 算法中,粒子局部最优引导的选择方式为:在第t次迭代时,从当前种群\中通过均匀随机抽样的方式挑选一个粒子作为局部最优引导粒子,从整数集合中进行均匀随机抽样。这种选择方式虽能使粒子在一定程度上探索解空间,但由于选取的粒子随机性较大,可能并非是当前种群中具有优良特性的解,导致粒子后续的搜索方向缺乏足够的引导性,影响算法收敛速度与寻优精度。
改进后的算法在每次迭代中,先按照传统的速度和位置更新公式更新粒子位置,然后进行变异操作,接着自适应调整粒子位置,计算新位置的适应度并替换旧解,最后更新惯性权重。通过这些改进,增强了算法的全局搜索能力和收敛速度,降低了陷入局部最优的风险。
通过上述改进点的引入,改进后的 MOPSO 算法在解决多目标优化问题时具有更好的性能。
部分结果如下图:
代码能正常运行时不负责答疑!
电子产品,一经出售,概不退换
算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。