论文阅读:Graph-based Region and Boundary Aggregation for Biomedical Image Segmentation

本文提出了一种结合区域和边界信息的图神经网络(GNN)深度学习框架,用于生物医学图像分割。通过注意增强模块(AEM)提取区分的特征,并利用GNN进行图推理,确保区域和边界的特征一致性。实验表明,这种方法在视神经盘和视神经杯分割以及结肠镜息肉分割任务中提高了模型的鲁棒性和泛化能力。
摘要由CSDN通过智能技术生成

目录

Article information

Related Works & Terminology

Abstract

Methods

Overview

AEM

Graph Based Reasoning

1) Graph Node Initialization

2) Single Graph Reasoning Module

Loss Function

Experiments


Article information

Graph-based Region and Boundary Aggregation for Biomedical Image Segmentation

文献地址:Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

期刊:IEEE Transactions on Medical Imaging, 2021

重点:同时使用区域内部区域边界的信息,将GNN嵌入生物医学图像分割

The trained models: https://github.com/smallmax00/Graph_Region_Boudnary

Related Works & Terminology

Region-based Segmentation:例如U-n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值