论文阅读:Graph-based Region and Boundary Aggregation for Biomedical Image Segmentation

本文提出了一种结合区域和边界信息的图神经网络(GNN)深度学习框架,用于生物医学图像分割。通过注意增强模块(AEM)提取区分的特征,并利用GNN进行图推理,确保区域和边界的特征一致性。实验表明,这种方法在视神经盘和视神经杯分割以及结肠镜息肉分割任务中提高了模型的鲁棒性和泛化能力。
摘要由CSDN通过智能技术生成

目录

Article information

Related Works & Terminology

Abstract

Methods

Overview

AEM

Graph Based Reasoning

1) Graph Node Initialization

2) Single Graph Reasoning Module

Loss Function

Experiments


Article information

Graph-based Region and Boundary Aggregation for Biomedical Image Segmentation

文献地址:Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation | IEEE Journals & Magazine | IEEE Xplore

期刊:IEEE Transactions on Medical Imaging, 2021

重点:同时使用区域内部区域边界的信息,将GNN嵌入生物医学图像分割

The trained models: https://github.com/smallmax00/Graph_Region_Boudnary

Related Works & Terminology

Region-based Segmentation:例如U-n

### 回答1: 基于图像分割的图像分割是一种基于图像像素之间的相似性和差异性来分割图像的方法。该方法将图像表示为图形,其中每个像素都是图形中的一个节点,相邻像素之间的边缘表示它们之间的相似性和差异性。然后,使用图形分割算法将图形分成不同的区域,每个区域都具有相似的像素值和特征。这种方法在计算机视觉和图像处理中广泛应用,例如目标检测,图像分割和图像分析等领域。 ### 回答2: 图像分割是一种通过将图像分割成若干个子区域,从而将图像信息分解的方法,其中每个子区域能够代表整个图像的一个重要部分。在计算机视觉应用中,图像分割技术是非常重要的,因为它可以为图像处理和图像分析提供基础。 其中一种广泛应用的图像分割技术就是图像分割算法,其中一种主要的算法就是基于图的图像分割算法。这种算法的基本原理是将图像转换成一个带权图,然后使用图论算法来将图像切分成若干子区域。其中图论算法包括最小割算法和归一化割谱聚类算法等。 最小割算法的基本思想是将图像中的每个像素点表示为图中的一个节点,并且将节点之间的边表示为不同像素之间的相似性。最小割算法通过不断地在图中切割最小权重的边,从而实现最小割。这样,图像的每个节点都位于一个切割的区域内。 归一化割谱聚类算法是一种基于图的图像分割算法,它首先将图像表示为一个带权图的临界矩阵,然后通过计算临界矩阵的本征矢量和本征值,来对图像进行聚类。归一化割谱聚类算法适用于图像中具有多个分离目标的情况,它可以通过本征值的数量和本征向量的个数来对图像进行有效的分割。 总之,基于图的图像分割算法是一种非常有效和广泛应用的技术,它可以在很多计算机视觉应用中发挥重要作用。无论是最小割算法,还是归一化割谱聚类算法,它们都是基于图像特征来切割图像的,并且可以在不同场景中应用。因此,我们可以使用这些算法来实现图像分割、物体检测和图像分析等领域。 ### 回答3: 图像分割是图像处理中的一个重要研究领域,它旨在将一幅图像分割成不同的区域,每个区域内的像素具有相似的特点。图像分割在计算机视觉、医学图像处理、机器人技术、自动驾驶等领域有着广泛的应用。其中,基于图的图像分割是一种常见的方法。 基于图的图像分割是指将图像表示为一个图,并使用图论方法对其进行分割。通常,我们将图像的像素看做图中的节点,将相邻的像素之间连接一条边,边权则表示节点之间的相似度。然后,我们将图中的节点分为不同的集合,使得集合内的节点相似度高于不同集合之间的相似度。 基于图的图像分割有很多算法,常见的包括最小割算法、谱聚类算法、标准化割算法等。其中,最小割算法是基于图像中两个不同区域间的点连接权重的最小价值问题来实现的。 对于一个图像,我们先将其表示为一个无向图,并将每一个像素点看作该图中的节点。接着,我们将相邻像素点之间的连线看作边,每一条边的权值取决于相邻像素点间的相似度,我们可以使用灰度差值和颜色差值作为相似度的衡量标准。然后,在这个图中,我们找出一条最小路径来将该图分成两个部分,这条路径就是最小割,分成两部分的区域就是图像的分割结果。 总之,基于图的图像分割是一种常见的图像分割方法,它使用图像形式来表示并更好地处理图像中的区域分割问题,是计算机视觉领域中的一个重要研究方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值