【AI气象强短强13】基于 Pangu-weather AI 驱动的区域 WRF 模型改进华北极端降水预报

0.论文背景

英文名:Improvement of disastrous extreme precipitation forecasting in North China by Pangu-weather AI-driven regional WRF model

引用:Xu, Hongxiong, et al. "Improvement of disastrous extreme precipitation forecasting in North China by Pangu-weather AI-driven regional WRF model." Environmental Research Letters 19.5 (2024): 054051.

1. 研究背景

1.1 气候变化与极端降水

  • 近年来,极端降水事件(Extreme Precipitation, EP)在全球范围内频繁发生,给社会经济和生态环境带来严重影响。
  • 传统数值天气预报(NWP)在预测中小尺度降水事件时存在局限性,主要原因包括:
    • 分辨率较低,难以捕捉局地对流降水特征。
    • 回归算法的局限性,导致极端降水预测不准确。
    • 降水变量的不确定性,影响预测精度。

1.2 研究目标

  • 结合 AI 与传统 WRF 模型,以提高极端降水事件的预报能力。
  • 研究 Pangu-weather AI 在极端降水预测中的优势,对比其与传统 GFS(全球预报系统)模式的预测能力。
  • 通过华北 2023 年 7 月 29 日至 8 月 1 日的极端降水事件,验证 AI-驱动 WRF 模型的有效性。

2. 研究方法

2.1 数据集

  • 中国气象局(CMA)降水分析数据集:1km 空间分辨率,每小时更新,结合了 30,000+ 雨量站数据和卫星观测数据。
  • ERA5 资料:来自 ECMWF(欧洲中期天气预报中心),用于分析天气背景场。
  • NCEP 全球高空观测数据:用于评估模型预报准确性。

2.2 Pangu-weather 预测

  • Pangu-weather AI 是基于 深度学习的全球天气预测系统,采用 3D 神经网络,训练数据涵盖 1979-2017 年的 ERA5 数据。
  • 该 AI 预测系统在部分天气条件下优于传统 NWP,但在极端降水事件上的精度仍待提高。

2.3 WRF 模型

  • 采用 WRF 4.2.1 版本,设定双嵌套网格:
    • 外层网格:12km 分辨率,覆盖东亚地区。
    • 内层网格:3km 分辨率,专注于华北区域。
  • 采用 50 层垂直网格,涵盖从地表到 50 hPa 的大气结构。

2.4 试验设计

  • 设计 9 组试验,使用 Pangu-weather 和 GFS 预测数据 作为 WRF 模型的初始条件:
    • Pangu 试验组(WRF_Pangu):以 Pangu 预测数据驱动 WRF 模型。
    • GFS 试验组(WRF_GFS):以传统 GFS 预测数据驱动 WRF 模型。
  • 关键时间点:
    • Pangu_2312(2023 年 7 月 23 日 12:00 UTC)
    • Pangu_2600(2023 年 7 月 26 日 00:00 UTC)
    • Pangu_2812(2023 年 7 月 28 日 12:00 UTC)
    • 相应地设置 GFS 试验。

2.5 评估指标

  • 均方根误差(RMSE)偏差(Bias):评估初始条件准确性。
  • 威胁评分(TS):衡量极端降水预测的准确度(0-1,越高越好)。
  • 命中率(Hit Rate)与误报率(False Alarm Rate):分析预测可靠性。

3. 研究结果

3.1 气象背景

  • 台风杜苏芮(Doksuri) 2023 年 7 月 29 日至 8 月 1 日在华北引发极端降水:
    • 北京最高降水量达 744.8mm,全市平均 276.5mm
    • 河北省最大降水量 1003mm,26 个气象站破历史记录。
  • 极端降水受 副热带高压(WPSH)、台风水汽输送、地形影响 共同作用。

3.2 Pangu-weather 预测能力

3.2.1 水汽通量预测
  • Pangu-weather 在 水汽输送预测 方面表现稳定:
    • 预测的水汽通量分布与 ERA5 再分析数据接近,特别是在 台风杜苏芮影响区域
    • 预测误差随时间增加,但相比 GFS 模型,Pangu 的误差增长较小。
3.2.2 温度与湿度预测
  • Pangu-weather 对 低层湿度和地势高度 预测精度较 GFS 更高:
    • 低层大气水汽含量误差更小,说明 AI 预测对水汽输送更敏感。
    • 位势高度预测偏差更小,说明对环流背景场的模拟更精确。

3.3 AI-驱动 WRF 预测表现

3.3.1 降水空间分布
  • WRF_Pangu_2812 试验(AI-驱动 WRF)能较准确模拟:
    • 极端降水的 空间分布,特别是 250mm 以上的降水区域。
    • 但在河北西部有一定程度的降水高估。
  • WRF_GFS 试验(传统 GFS-驱动 WRF)表现:
    • 降水分布误差较大,尤其是 WRF_GFS_2312 试验,预测几乎没有降水。
3.3.2 降水定量评估
  • TS 评分
    • WRF_Pangu_2812 在 600mm 阈值 处 TS 评分>0.1。
    • WRF_GFS_2812 仅在 500mm 阈值 处 TS > 0.1,整体预测偏弱。
  • 命中率 vs 误报率
    • WRF_Pangu_2600 试验 误报率稍高,可能因降水范围扩大导致。
3.3.3 台风路径评估
  • Pangu-驱动 WRF 更准确地模拟了杜苏芮路径
    • WRF_Pangu_2312 & WRF_Pangu_2600 能较好模拟 台风移动路径
    • WRF_GFS 试验存在较大误差,导致降水中心偏移。

4. 研究结论

  1. AI-驱动 WRF 预测较传统 GFS-驱动 WRF 更精准
    • 在极端降水的 时空分布强度预测 方面表现更佳。
  2. Pangu-weather 误差增长较慢,预测稳定性更高
    • 8.5 天预报时,TS 评分仍大于 0.1,而 GFS 仅能维持 3 天
  3. AI 结合物理模型是未来天气预报的关键方向
    • Pangu+WRF 模式可用于改进区域极端天气预测

5. 未来研究方向

  • 更多极端天气案例分析,提高 AI 预测泛化能力。
  • 更高分辨率 AI 预报,优化 AI 在中小尺度天气系统的表现。
  • 数据同化改进,减少 AI 预测的系统误差,提高短临降水预报能力。

总结

本研究验证了 Pangu-weather AI 结合 WRF 模型 在极端降水预测中的优势,表明 AI 技术在提高降水预报精度方面具有巨大潜力,为未来 智能天气预报系统 发展提供了重要参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值