与确定性相关的操作
1)torch.backends.cudnn.deterministic = True:
这行代码将使得使用 CUDA 加速的操作在相同输入下产生确定性的输出。在默认情况下,CuDNN(CUDA 的深度神经网络库)会通过一些优化技巧来加速运算,但这可能会导致不同运行时产生微小的数值差异。通过将这个参数设置为 True,可以确保每次运行结果的一致性,但可能会稍微降低性能。
2)torch.set_num_threads(1):
这行代码将设置 PyTorch 的线程数为 1。在多线程环境下,PyTorch 会自动根据系统的 CPU 核心数设置默认的线程数,以加速计算。然而,在某些情况下,特别是当代码中存在随机性操作时,多线程可能会导致结果不确定性。通过将线程数设置为 1,可以确保在单线程环境下获得确定性的结果,而不受多线程带来的影响。
3)torch.use_deterministic_algorithms(False):
这行代码用于设置 PyTorch 是否使用确定性算法。当设置为 False 时,PyTorch 可能会使用一些优化技巧或非确定性算法来提高性能,但这也意味着运行结果可能会在不同的运行时产生微小的数值差异。如果你希望结果具有确定性,你可以将此参数设置为 True,以确保每次运行结果的一致性。
4)torch.manual_seed(0):
这行代码用于设置 PyTorch 的随机种子。通过指定一个种子值,你可以使得随机操作在每次运行时产生相同的随机数序列。在机器学习中,使用相同的随机种子可以确保实验的可复现性,因为随机初始化和数据处理等步骤的结果将保持一致。