1.证明:用QR p _p p表示模p的QR的集合,QR p _p p在乘法上成群。
封闭性:任取a
1
_1
1,a
2
_2
2∈QR
p
_p
p,a
1
_1
1*a
2
_2
2=a
3
_3
3,因a
1
_1
1,a
2
_2
2都可开根为整数,则a
3
_3
3也可,则a
3
_3
3∈QR
p
_p
p
结合律:任取a
1
_1
1,a
2
_2
2,a
3
_3
3∈QR
p
_p
p,
a
1
_1
1≡x
1
_1
12(mod p)
a
2
_2
2≡x
2
_2
22(mod p)
a
3
_3
3≡x
3
_3
32(mod p)
(a
1
_1
1*a
2
)
_2)
2)*a
3
_3
3=(x
1
_1
12x
2
_2
22)x
3
_3
32(mod p)=x
1
_1
12(x
2
_2
22x
3
_3
32)(mod p)=a
1
_1
1 *(a
2
_2
2*a
3
_3
3)
单位元:1
逆元:
2.群论证明:设p为奇素数,则刚好存在(p-1)/2个模p的QR和(p-1)/2个模p的QNR
定义从Z
p
_p
p到QR
p
_p
p的映射ψ:∀a∈Z
p
_p
p,a→a2 ,则a,b∈Z
p
_p
p,有:
ψ(a⋅b)=(ab)2=a 2⋅b2 =ψ(a)∘ψ(b),
故ψ 是一种群同态。
又Q R
p
_p
p,的单位元是1,故Kerψ = 1 , p − 1 = K , Kerψ=1,p−1=K,是Z
p
_p
p的正规子群
则存在标准同态ϕ : Z
p
_p
p-> Z
p
_p
p/k
由第一同构定理,存在唯一同构映射η :Z
p
_p
p-> Z
p
_p
p/k
故|QR
p
_p
p|=|Z
p
_p
p*/k|=(p-1)/2,
得证
3、定义映射ψ : Z p _p p*→±1为ψ(a)=a/p,∀a∈Z p _p p *.请证明这是一个满同态。
ψ(a⋅b)==(ab/p)=(a/p)(b/p)=ψ(a)∘ψ(b),
所有ψ是一种同态,
又∀ a ∈ Z p ∗ ,
若a是QR,则:ψ ( a ) = 1
若a是QNR,则:ψ ( a ) = − 1
所以ψ 是 一 种 满 射 。 故 是一种满射。故是一种满射。故ψ是一种满同态。
4、设 p 是奇素数,请证明 Zp* 的所有生成元都是模 p 的二次非剩余。
证明:
任取a是Z
p
_p
p*的生成元,设m是模p的一个QR,n是模p的一个QNR,则存在p , q ∈ Z , 使 得ap=m,aq=n
当a是模p的QR时,则∀k∈Z,aq是QR
当a是模p的QNR时,则∀k∈Z,a2k是QR,a2k+1是QNR,
由于ap=m,aq=n,故a是QNR,
即Z
p
_p
p*的所有生成元都是模p的二次非剩余。
5、证明命题11.4
1、
①当 a 是 Q R 时 , 则 a ≡ b ≡ x 2 (mod p),故b是QR,则有a/p=b/p=1
②当 a 是 Q N R 时 ,则 a ≡ b ≡ x 2 (mod p)无解,故b是QNR,a/p=b/p=-1,
综上,∀ a , b ∈ Z 且 不 能 被 p 整 除 , 有 :
如 果 a ≡ b ( m o d p ) , 则 a/p=b/p,
2、
①当a,b均为QR时,则ab也是QR,(a/p)(b/p)=1⋅1=1=(ab)/p
②当a,b均为QNR时,则ab是QR,故(a/p)(b/p)=−1⋅-1=1=(ab)/p
③当a,b其中一个为QR,另一个为QNR时,则ab是QNR,故(a/p)(b/p)=1⋅−1=-1=(ab)/p
3、
无论a是QR还是QNR,都有a2是QR,故有a2/p=1
6、给出推论11.1的完整证明。
证明:
当p ≡ 1 ( m o d 4 ) 时 , 则 存 在 k ∈ Z , 使 得 p = 4 k + 1,根据欧拉准则,有:
-1/p≡(-1)(p-1)/2≡(-1)(4k+1-1)/2≡1(mod p)=1
当p ≡ − 1 ( m o d 4 ) 时 , 则 存 在 k ∈ Z , 使 得 p = 4 k + 3 ,根据欧拉准则,有:
-1/p≡(-1)(p-1)/2≡(-1)(4k+1-1)/2≡-1(mod p)=1