ComSec作业五:椭圆曲线

这里是引用

10.12

y2=x3+2x+1,mod 7
x 可为0,1,2,3,4,5,6,分别平方后mod 7,有

X0123456
X2mod70142241

x=0,y2=1,X=1、6,有(0,1)、(0,6)
x=1,y2=4,X=2、5,有(1,2)、(1,5)
x=2,y2=6 ,无解
x=3,y2=6 ,无解
x=4,y2=3 ,无解
x=5,y2=3 ,无解
x=6,y2=5,无解
综述,有(0,1)、(0,6) 、(1,2)、(1,5)

10.13

(x,y)的反点为(x,-y)mod 7,因此,有:
(3,5): (3,2)
(2,5): (2,2)
(5,0):(5,0)

10.14

y2=x3+x+7,a=1,b=7,mod 11,G=(3,2),
x3= λ \lambda λ2-x1-x2
y3= λ \lambda λ(x1-x3)-y1
两点相同, λ \lambda λ=(3x12+a)/2y1,
两点不同, λ \lambda λ=(y2-y1)/(x2-x1)
mod 7 的逆元表有:

x12345678910
x-116439287510

G+G=(3,2)+(3,2)
λ \lambda λ=(3 * 32 +1)/(2 *2)=28 * 4-1=6 * 3=7
有(10,4)

以下的两点不同, λ \lambda λ的算法要改变:
3G=G+2G
λ \lambda λ=5
有(1,8)

4G=G+3G
λ \lambda λ=8
有(5,4)

5G=G+4G
λ \lambda λ=1
有(4,8)

6G=G+5G
λ \lambda λ=6
有(7,7)

7G=G+6G
λ \lambda λ=4
有(6,8)

8G=G+7G
λ \lambda λ=2
有(6,3)

9G=G+8G
λ \lambda λ=4
有(7,4)

10G=G+9G
λ \lambda λ=6
有(4,3)

11G=G+10G
λ \lambda λ=1
有(5,7)

12G=G+11G
λ \lambda λ=8
有(1,3)

13G=G+12G
λ \lambda λ=5
有(10,7)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值