10.12
y2=x3+2x+1,mod 7
x 可为0,1,2,3,4,5,6,分别平方后mod 7,有
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|
X2mod7 | 0 | 1 | 4 | 2 | 2 | 4 | 1 |
x=0,y2=1,X=1、6,有(0,1)、(0,6)
x=1,y2=4,X=2、5,有(1,2)、(1,5)
x=2,y2=6 ,无解
x=3,y2=6 ,无解
x=4,y2=3 ,无解
x=5,y2=3 ,无解
x=6,y2=5,无解
综述,有(0,1)、(0,6) 、(1,2)、(1,5)
10.13
(x,y)的反点为(x,-y)mod 7,因此,有:
(3,5): (3,2)
(2,5): (2,2)
(5,0):(5,0)
10.14
y2=x3+x+7,a=1,b=7,mod 11,G=(3,2),
x3=
λ
\lambda
λ2-x1-x2,
y3=
λ
\lambda
λ(x1-x3)-y1
两点相同,
λ
\lambda
λ=(3x12+a)/2y1,
两点不同,
λ
\lambda
λ=(y2-y1)/(x2-x1)
mod 7 的逆元表有:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
x-1 | 1 | 6 | 4 | 3 | 9 | 2 | 8 | 7 | 5 | 10 |
G+G=(3,2)+(3,2)
λ
\lambda
λ=(3 * 32 +1)/(2 *2)=28 * 4-1=6 * 3=7
有(10,4)
以下的两点不同,
λ
\lambda
λ的算法要改变:
3G=G+2G
λ
\lambda
λ=5
有(1,8)
4G=G+3G
λ
\lambda
λ=8
有(5,4)
5G=G+4G
λ
\lambda
λ=1
有(4,8)
6G=G+5G
λ
\lambda
λ=6
有(7,7)
7G=G+6G
λ
\lambda
λ=4
有(6,8)
8G=G+7G
λ
\lambda
λ=2
有(6,3)
9G=G+8G
λ
\lambda
λ=4
有(7,4)
10G=G+9G
λ
\lambda
λ=6
有(4,3)
11G=G+10G
λ
\lambda
λ=1
有(5,7)
12G=G+11G
λ
\lambda
λ=8
有(1,3)
13G=G+12G
λ
\lambda
λ=5
有(10,7)