10.12
由题, x 的取值可能为0、1、2、3、4、5、6
分别模7可得1,4,6,6,3,3,5
当
x
=
0
,
y
2
=
1
mod 7
,
故
y
=
1
或
y
=
7
当
x
=
1
,
y
2
=
4
mod 7
,
故
y
=
2
或
y
=
5
当x=0,y^2=1\text{ mod 7 },故y=1或y=7\\ 当x=1,y^2=4\text{ mod 7 },故y=2或y=5
当x=0,y2=1 mod 7 ,故y=1或y=7当x=1,y2=4 mod 7 ,故y=2或y=5
故
E
7
(
2
,
1
)
E_7(2,1)
E7(2,1)的所有点为:
(
0
,
1
)
(
0
,
6
)
(
1
,
2
)
(
1
,
5
)
(0,1)(0,6)(1,2)(1,5)
(0,1)(0,6)(1,2)(1,5)
10.13
P = ( 3 , 5 ) , − P = ( 3 , − 5 ) 又 − 5 ( m o d 7 ) = 2 , 故 − P = ( 3 , 2 ) Q = ( 2 , 5 ) , − Q = ( 2 , − 5 ) 又 − 5 ( m o d 7 ) = 2 , 故 − P = ( 2 , 2 ) R = ( 5 , 0 ) , − Q = ( 5 , 0 ) P = (3,5),-P=(3,-5)\\ 又-5(mod \text{ 7}) =2,故-P=(3,2)\\ \\ Q = (2,5),-Q=(2,-5)\\ 又-5(mod \text{ 7}) =2,故-P=(2,2)\\ \\ R = (5,0),-Q=(5,0) P=(3,5),−P=(3,−5)又−5(mod 7)=2,故−P=(3,2)Q=(2,5),−Q=(2,−5)又−5(mod 7)=2,故−P=(2,2)R=(5,0),−Q=(5,0)
10.14
由题,p=11,a=1,b=7
由 X R = ( λ 2 − X P − X Q ) m o d p , Y R = ( λ ( X P − X R ) − Y P ) m o d p X_R=(\lambda^2-X_P-X_Q)mod\text{ p},Y_R=(\lambda(X_P-X_R)-Y_P)mod\text{ p} XR=(λ2−XP−XQ)mod p,YR=(λ(XP−XR)−YP)mod p
其中
$$
可得