四皇后问题的主要思想
放张图在这大家基本就能看懂了,说白了就是一个个试,试到走不下去了换一种情况试。
所以可以通过递归代码实现四皇后问题的求解(因为思路是一样的就是换个数,所以这个代码也可以说是能解决n皇后的问题)。
#include<stdio.h>
#include<iostream>
#include<math.h>
#define n 4
using namespace std;
int count=0;
//判断在(x,y)放皇后是否冲突
int judge(int x,int y,int a[n][n]){
for(int i=0;i<n;i++){
if(a[x][i]==1&&y!=i){
return 0;
}
}
for(int i=0;i<n;i++){
if(a[i][y]==1&&x!=i){
return 0;
}
}
int i;
int j;
//左上
for(int i=x-1,j=y-1;i>=0&&j>=0;i--,j--){
if(a[i][j]==1){
return 0;
}
}
//左下
for(int i=x-1,j=y+1;i>=0&&j<n;i--,j++){
if(a[i][j]==1){
return 0;
}
}
//右上
for(int i=x+1,j=y-1;i<n&&j>=0;i++,j--){
if(a[i][j]==1){
return 0;
}
}
//右下
for(int i=x+1,j=y+1;i<n&&j<n;i++,j++){
if(a[i][j]==1){
return 0;
}
}
return 1;
}
void print(int a[n][n]){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
printf("%d ",a[i][j]);
}
printf("\n");
}
}
void digui(int x,int a[n][n])
{
if(x==n){
count++;
printf("这是第%d种情况\n",count);
print(a);
}
else{
for(int y=0;y<n;y++){
if(judge(x,y,a)){
a[x][y]=1;
digui(x+1,a);
//如果这里的递归函数出来了,要么是运行成功得到包括这个点的符合要求的皇后方法,要么是这个点放皇后无法达成要求
//说明这个点不需要放皇后了
a[x][y]=0;
}
}
}
}
int main()
{
int a[n][n]={0};
digui(0,a);
printf("总共是%d种情况",count);
return 0;
}