AI 第一次作业第一问——回溯算法(四皇后)

四皇后问题的主要思想

在这里插入图片描述
放张图在这大家基本就能看懂了,说白了就是一个个试,试到走不下去了换一种情况试。
所以可以通过递归代码实现四皇后问题的求解(因为思路是一样的就是换个数,所以这个代码也可以说是能解决n皇后的问题)。

#include<stdio.h>
#include<iostream>
#include<math.h>
#define n 4
using namespace std;
int count=0;
//判断在(x,y)放皇后是否冲突 
int judge(int x,int y,int a[n][n]){
	for(int i=0;i<n;i++){
		if(a[x][i]==1&&y!=i){
			return 0;
		}
	}
	for(int i=0;i<n;i++){
		if(a[i][y]==1&&x!=i){
			return 0;
		}
	}
	int i;
	int j;
	//左上 
	for(int i=x-1,j=y-1;i>=0&&j>=0;i--,j--){
		if(a[i][j]==1){
			return 0;
		}
	}
	//左下 
	for(int i=x-1,j=y+1;i>=0&&j<n;i--,j++){
		if(a[i][j]==1){
			return 0;
		}
	}
	//右上 
	for(int i=x+1,j=y-1;i<n&&j>=0;i++,j--){
		if(a[i][j]==1){
			return 0;
		}
	}
	//右下 
	for(int i=x+1,j=y+1;i<n&&j<n;i++,j++){
		if(a[i][j]==1){
			return 0;
		}
	}
	return 1;
}
void print(int a[n][n]){
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			printf("%d ",a[i][j]);
		}
		printf("\n");
	}
}
void digui(int x,int a[n][n])
{
	if(x==n){
		count++;
		printf("这是第%d种情况\n",count);		
		print(a);
	}
	else{
		for(int y=0;y<n;y++){
			if(judge(x,y,a)){
				a[x][y]=1;
				digui(x+1,a);
				//如果这里的递归函数出来了,要么是运行成功得到包括这个点的符合要求的皇后方法,要么是这个点放皇后无法达成要求
				//说明这个点不需要放皇后了 
				a[x][y]=0;
			}
		}
	}
}
int main()
{
	int a[n][n]={0};
	digui(0,a);
	printf("总共是%d种情况",count);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值