运筹学_2.线性规划

2.1 线性规划模型的建立

线性规划定义

  • 目标函数:线性
  • 约束条件:都是线性的
  • 决策变量:都是连续变量
  • 凸性分析:一定是凸优化

线性规划模型建立的步骤

  1. 假设决策变量
  2. 建立目标函数
  3. 寻找约束条件

2.2 线性规划的标准型

线性规划的一般形式

在这里插入图片描述
线性规划的一般形式是不等式约束

线性规划的标准型

max ⁡ Z = c 1 x 1 + c 2 x 2 + ⋯ + c n x n  s.t  { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m x j ≥ 0 , ( j = 1 , 2 , ⋯   , n ) \begin{gathered} \max Z=c_1 x_1+c_2 x_2+\cdots+c_n x_n \\ \text { s.t }\left\{\begin{array}{c} a_{11} x_1+a_{12} x_2+\cdots+a_{1 n} x_n=b_1 \\ a_{21} x_1+a_{22} x_2+\cdots+a_{2 n} x_n=b_2 \\ \cdots \cdots \\ a_{m 1} x_1+a_{m 2} x_2+\cdots+a_{m n} x_n=b_m \\ x_j \geq 0,(j=1,2, \cdots, n) \end{array}\right. \end{gathered} maxZ=c1x1+c2x2++cnxn s.t  a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯am1x1+am2x2++amnxn=bmxj0,(j=1,2,,n)

其中常数项 b i ≥ 0 , ( i = 1 , 2 , ⋯   , m ) b_i \geq 0, \quad(i=1,2,\cdots, m) bi0,(i=1,2,,m)

标准形式的特征:
⑴求目标函数的最大值;
⑵约束条件都是线性、等式约束,且决策变量非负;
⑶常数项 b i b_i bi非负

线性规划的一般形式化为标准型方法

(1)目标函数是min
在这里插入图片描述 (2)约束条件为不等式

  • 约束方程为“≤”不等式,则可在不等式的左端加非负松弛变量,把原不等式变为等式。
  • 约束方程为“≥”不等式,则可在不等式的左端减去非负剩余变量(也可称松弛变量),把原不等式变为等式约束条件

(3) 决策变量无约束
在这里插入图片描述

  • 例子
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

(4) 右端常数项 b i b_i bi为负的→不等式两端乘以-1

2.3 线性规划图解法

高中学的画图的方法

  • 线性规划的可行域为凸集
  • 凸集是指集合内任意两点,其两点的连线都在这个集合内,我们称这个集合为凸集
  • 可行域上所求的解,我们称为可行解
  • 使目标函数达到最值的可行解,我们称为最优解,最优解在可行域的顶点达到

2.4 线性规划问题的解

线性规划的标准型:
max ⁡ Z = c 1 x 1 + c 2 x 2 + ⋯ + c n x n  s.t  { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m x j ≥ 0 , ( j = 1 , 2 , ⋯   , n ) \begin{gathered} \max Z=c_1 x_1+c_2 x_2+\cdots+c_n x_n \\ \text { s.t }\left\{\begin{array}{c} a_{11} x_1+a_{12} x_2+\cdots+a_{1 n} x_n=b_1 \\ a_{21} x_1+a_{22} x_2+\cdots+a_{2 n} x_n=b_2 \\ \cdots \cdots \\ a_{m 1} x_1+a_{m 2} x_2+\cdots+a_{m n} x_n=b_m \\ x_j \geq 0,(j=1,2, \cdots, n) \end{array}\right. \end{gathered} maxZ=c1x1+c2x2++cnxn s.t  a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯am1x1+am2x2++amnxn=bmxj0,(j=1,2,,n)
其中常数项 b i ≥ 0 , ( i = 1 , 2 , ⋯   , m ) b_i \geq 0, \quad(i=1,2,\cdots, m) bi0,(i=1,2,,m)

表示成矩阵形式:
max ⁡ Z = C X  s.t  { A X = b X ≥ 0 \begin{gathered} \max Z=CX \\ \text { s.t }\left\{\begin{array}{c} AX=b \\ X≥0 \end{array}\right. \end{gathered} maxZ=CX s.t {AX=bX0
其中:
在这里插入图片描述

可行解

满足约束条件,AX=b, X≥0的解X称为线性规划问题的可行解

最优解

使Z=CX达到最大值的可行解称为最优解

基、基解、基可行解、可行基

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

线性规划解的关系

在这里插入图片描述
最优解一定是基可行解

最优解的特点

最优解的特点:
(1)可能只有一个解;
(2)可能有多个解;
(3)最优解可能为无穷(无穷大或无穷小);
(4)可能无解。

凸集

在这里插入图片描述

顶点

在这里插入图片描述

凸组合

在这里插入图片描述

线性规划的几个定理

  • 定理一:
    在这里插入图片描述
  • 定理二:线性规划问题的基可性解X对应于可行域D的顶点
  • 定理三:若可行域有界,线性规划问题的目标函数一定可以在其可行域的顶点上达到最优。

几点结论

  • 线性规划问题的可行域是凸集。
  • 基可行解与可行域的顶点一一对应,可行域有有限多个顶点。
  • 最优解必在顶点上得到。

2.5 单纯形法(1947年)的基本概念

单纯形法的思路

  • 1、构造初始可行基;
  • 2、求出一个基可行解(顶点);
  • 3、最优性检验:判断是否最优解;
  • 4、基变化,转2。要保证目标函数值比原来更优。

例题

在这里插入图片描述
转换为线性规划的标准型:
在这里插入图片描述
第一步:确定初始基可行解
在这里插入图片描述
第二步:求出基可行解
在这里插入图片描述
第三步:最优性检验
在这里插入图片描述
在这里插入图片描述
第四步:基变换

  • 换入变量
    在这里插入图片描述
  • 换出变量 在这里插入图片描述

第五步:迭代运算
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.6 单纯形法表格法

表格法

见视频

单纯形法的矩阵描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.7 线性规划的大M法和两阶段法

大M法

  • 为什么提出大M法?
    线性规划为标准型时,若约束条件的系数矩阵中不存在单位矩阵?如何构造初始可行基(也就是2.4中基、基解、基可行解、可行基处提到的非奇异子矩阵)。因此引入大M法
  • 具体原理见视频
  • 关键词:约束条件加入人工变量;目标函数惩罚人工变量,添加惩罚因子

两阶段法

  • 为什么提出两阶段法?
    大M法在计算机上难以处理,因此提出两阶段法
  • 具体原理
    先求初始基,再求解

2.8 线性规划的应用

建模步骤

在这里插入图片描述

2.9 线性规划的对偶问题

对称形式的对偶

在这里插入图片描述
在这里插入图片描述

非对称形式的对偶

在这里插入图片描述

原问题与对偶问题的关系

在这里插入图片描述

2.10 对偶问题的性质

  • 对称定理:
    定理:对偶问题的对偶是原问题

  • 弱对偶性定理
    在这里插入图片描述

  • 最优性定理
    在这里插入图片描述

  • 对偶定理(强对偶性)
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值