4个状态转移到四个状态,最多有16种情况
然后第一行作为个位,在i列摆积木,看i+1的状态,有积木为1,没有为0
当i列都是1,都有积木的时候,就不用在i列摆了,所以只有一种情况,在0的位置
这个矩阵的行是0,1,2,3是第i列的所有情况,然后看是否能转移到0,1,2,3的i+1的情况,如果能就加一,但是这道题每次能转移到的时候都只有一种,所以在对应位置为1。
后来算f【n+1】【0】的时候,就是枚举每一列,然后枚举所有情况,看从j状态能不能更新到第k状态
#include<iostream>
using namespace std ;
int g[4][4] = {
{1,1,1,1},
{0,0,1,1},
{0,1,0,1},
{1,0,0,0}
} ;
const int N = 1e7 + 10 , MOD = 1e9 +7 ;
int f[N][4] ;
int n ;
int main()
{
cin >> n;
f[1][0] = 1 ;
for(int i = 1 ; i <= n ; i++)
{
for(int j = 0 ; j < 4 ; j++)
{
for(int k = 0 ; k < 4 ; k++)
f[i+1][j] = (f[i+1][j] + g[j][k]*f[i][k])% MOD ;
}
}
cout << f[n+1][0] ;
return 0 ;
}
#include<iostream>
using namespace std ;
int g[4][4] = {
{1,1,1,1},
{0,0,1,1},
{0,1,0,1},
{1,0,0,0}
} ;
const int N = 1e7 + 10 , MOD = 1e9 +7 ;
int f[N][4] ;
int n ;
int main()
{
cin >> n;
f[0][0] = 1 ;
for(int i = 1 ; i <= n ; i++)
{
for(int j = 0 ; j < 4 ; j++)
{
for(int k = 0 ; k < 4 ; k++)
f[i][j] = (f[i][j] + g[j][k]*f[i-1][k])% MOD ;
}
}
cout << f[n][0] ;
return 0 ;
}