acwing 4406 积木画 2022/05/04

4个状态转移到四个状态,最多有16种情况

然后第一行作为个位,在i列摆积木,看i+1的状态,有积木为1,没有为0

当i列都是1,都有积木的时候,就不用在i列摆了,所以只有一种情况,在0的位置
这个矩阵的行是0,1,2,3是第i列的所有情况,然后看是否能转移到0,1,2,3的i+1的情况,如果能就加一,但是这道题每次能转移到的时候都只有一种,所以在对应位置为1。

后来算f【n+1】【0】的时候,就是枚举每一列,然后枚举所有情况,看从j状态能不能更新到第k状态

#include<iostream>

using namespace std ;
int g[4][4] = {
    {1,1,1,1},
    {0,0,1,1},
    {0,1,0,1},
    {1,0,0,0}
} ;
const int N = 1e7 + 10 , MOD = 1e9 +7  ;
int f[N][4] ;

int n ;


int main()
{
    cin >> n;
    f[1][0] = 1 ;
    for(int i = 1 ; i <= n  ; i++)
    {
        for(int j = 0 ; j < 4 ; j++)
        {
            for(int k = 0 ; k < 4 ; k++)
                f[i+1][j] = (f[i+1][j] + g[j][k]*f[i][k])% MOD ;
        }
        
    }
    cout << f[n+1][0] ;
    return 0 ;
}
#include<iostream>

using namespace std ;
int g[4][4] = {
    {1,1,1,1},
    {0,0,1,1},
    {0,1,0,1},
    {1,0,0,0}
} ;
const int N = 1e7 + 10 , MOD = 1e9 +7  ;
int f[N][4] ;

int n ;


int main()
{
    cin >> n;
    f[0][0] = 1 ;
    for(int i = 1 ; i <= n  ; i++)
    {
        for(int j = 0 ; j < 4 ; j++)
        {
            for(int k = 0 ; k < 4 ; k++)
                f[i][j] = (f[i][j] + g[j][k]*f[i-1][k])% MOD ;
        }
        
    }
    cout << f[n][0] ;
    return 0 ;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三粒小金子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值