redis缓存——缓存穿透原理及解决方法

文章探讨了缓存穿透问题,解释了其成因及防护方法,并介绍了布隆过滤器作为解决缓存穿透和快速判断元素存在性的数据结构,包括其工作原理、优点、误判率和不支持删除操作的特点。
摘要由CSDN通过智能技术生成

        缓存穿透是一种指在缓存系统中,请求的数据无论在缓存中还是在数据库中都不存在,导致请求每次都要访问数据库,增加了系统的负载和延迟。这种情况通常是由于恶意攻击、缓存配置错误或者业务逻辑错误所导致。

        缓存穿透的攻击通常是攻击者发送大量的恶意请求,请求的键在缓存中都不存在,这样每次请求都会绕过缓存直接访问数据库,从而引起数据库的压力过大。这种攻击可以通过合理的缓存配置、限流等方法来进行防护。

        另外,缓存配置错误或者业务逻辑错误也会导致缓存穿透。例如,在将数据存入缓存之前没有做有效的校验,导致无效的请求能够绕过缓存直接访问数据库。这种情况可以通过增加数据校验的逻辑来解决。

        布隆过滤器(Bloom Filter)是一种空间效率高、支持快速插入和查询的数据结构,它利用位数组和多个哈希函数来表示一组元素。它可以判断一个元素是否可能存在于集合中,但无法确定元素确切存在与否。

布隆过滤器的基本原理如下:

  1. 初始化:创建一个长度为m的位数组,所有位都被置为0。
  2. 插入操作:将元素使用多个哈希函数进行哈希计算,得到多个哈希值。然后将位数组中对应的位置置为1。
  3. 查询操作:对待查询的元素同样使用多个哈希函数进行哈希计算,得到多个哈希值。然后检查位数组对应位置的值,如果所有位置都为1,则认为元素可能存在于集合中,如果有任何一个位置为0,则可以确定元素不存在于集合中。

布隆过滤器的优点是占用空间小,查询速度快,因为它可以将元素表示为位数组,且查询只需要计算哈希值和检查对应的位值就可以得出结果。同时,它的插入操作也很快,只需要进行位的置1操作。

然而,布隆过滤器也有一些缺点需要注意:

  1. 存在一定的误判率:由于多个元素可能映射到相同的位,所以有一定的概率会出现误判,将一个不存在的元素误认为存在。
  2. 不支持删除操作:布隆过滤器中的位一旦被置为1,就无法再恢复为0。因此,如果需要支持删除操作,需要使用其他的数据结构配合布隆过滤器。

布隆过滤器广泛应用于需要快速判断元素是否存在的场景,如缓存系统、爬虫去重、垃圾邮件过滤等。通过权衡其误判率和空间消耗,可以根据具体的应用场景选择合适的参数配置来构建布隆过滤器。

 

 

设置布隆过滤器误判率源码

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值