线性回归模型损失和优化

本文对比了正规方程与梯度下降在小规模和大规模数据学习任务中的应用,详细解释了正规方程的一次求解优点和在复杂特征下的局限,以及梯度下降的迭代优化过程。讨论了如何根据数据规模选择合适的方法:正规方程适用于简单线性回归,而梯度下降在大规模数据下通过SGDRegressor更有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习任务

使用正规方程对损失函数优化的过程
使用梯度下降法对损失函数优化的过程

在这里插入图片描述

优化方法

正规方程

正规方程,一次就可以求得最合适的值
在这里插入图片描述
理解:X为特征矩阵,y为目标值矩阵。直接求得最好的结果
缺点:当特征值过多复杂时,求解速度太慢并且得不到结果。

正规方程推导过程

在这里插入图片描述

梯度下降

     梯度是微积分中一个很重要的概念,在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率;在多变量函数中,梯度是一一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向;
    这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向
     就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!

在这里插入图片描述
在这里插入图片描述

梯度下降公式

在这里插入图片描述

两者的对比

在这里插入图片描述

如何选择

小规模数据

    ·正规方程:LinearRegression(不能解决拟合问题)

    ·岭回归

大规模数据

·梯度下降法:SGDRegressor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值