【线性代数】高斯消元法与矩阵的初等变换

上一篇:矩阵及其运算【写在前面的话】众所周知,线性代数在计算机应用方面也是比较广的(比如人工智能等前沿科技领域)。所以...在CSDN记录线性代数的知识不为过吧,哈哈(//狗头保命)。想要学线性代数的小伙伴可以跟随我的脚步一起学习一下。(坚持每天至少发一篇)话不多说,我们直接开始。目录1.1矩阵及其运算一,矩阵的概念二,矩阵的线性运算三,矩阵的乘法四,矩阵的转置五,习题1.1一,矩阵的概念我们先来看一下书上关于 ..https://blog.csdn.net/weixin_51781852/article/details/122504791?spm=1001.2014.3001.5501

目录

一,高斯消元法

二,矩阵的初等变换

三,初等矩阵


对于一般线性方程组,我们要讨论的问题是:它在什么条件下有解?如果有解,有多少解?又如何求出其全部解?所谓解方程组,就是当方程组有解时求出它的全部解,当它无解时判明它无解。

一,高斯消元法

高斯消元法的目的:解多元方程

高斯消元法的解题过程:反复施行初等变换

那么,什么是初等变换?初等变换可以归纳为以下的三种变换:

1)交换两个方程的位置

2)用一个非零数乘某一个方程

3)把一个方程的适当倍数加到另一个方程上去

我们来举一个例子来说明:

例1   解线性方程组

\left\{\begin{matrix} 3x_{1}- & x_{2}+ & 5x_{3}=& 3,\\ x_{1}-& x_{2} +&2x_{3}= & 1,\\ x_{1}-&2x_{2} - & x_{3}= & 2. \end{matrix}\right.

解:将方程组中的第一个与第三个方程交换位置(用上述第一种变换),得方程组

\left\{\begin{matrix} x_{1} -2x_{2}-x_{3}=2& & \\ x_{1}-x_{2}+2x_{3}=1& & \\ 3x_{1}-x_{2}+5x_{3}=3& & \end{matrix}\right.

将方程组的第一个方程的-1倍加到第二个方程,然后将第一个方程的-3倍加到第三个方程(用上述第二种变换),得方程组

\left\{\begin{matrix} x_{1}-2x_{2}-x_{3}=2\\ x_{2}+3x_{3}=-1\\ 5x_{2}+8x_{3}=-3 \end{matrix}\right.

再将方程组中第二个方程组的-5倍加到第三个方程(用上述第三种变换),得方程组

\left\{\begin{matrix} x_{1}-2x_{2}-x_{3}=2\\ x_{2}+3x_{3}=-1\\ -7x_{3}=2 \end{matrix}\right.

这就是 高斯消元的过程,于是得方程组的唯一解为

\left\{\begin{matrix} x_{1}=\frac{10}{7}\\ x_{2}=-\frac{1}{7}\\ x_{3}=-\frac{2}{7} \end{matrix}\right.

二,矩阵的初等变换

看如下线性方程组

\left\{\begin{matrix} a_{11}x _{1}+&a_{12}x _{2}+ &... +&a_{1n} x_{n}&=b_{1} \\ a_{21}x _{1}+ & a_{22}x _{2}+ & ... +& a_{2n}x _{n}& =b_{1}\\ && ... ......& & \\ a_{m1}x _{1}+&a_{m2}x _{2}+ & ...+ & a_{mn}x _{n} & =b_{m} \end{matrix}\right.

 我们可以将方程组的系数与常数项用矩阵来表示,整个消元的过程都可在矩阵上进行,为此,我们引入了矩阵的初等变换的概念。

矩阵的行(列)初等变换指对矩阵施以下列三种变换:

1)交换两行(列)的位置

2)用一非零数乘某一行(列)的所有元

3)把矩阵的某一行(列)的适当倍数加到另一行(列)上去

 我们来举个例子说明

先解例1的方程组

\left\{\begin{matrix} 3x_{1}- & x_{2}+ & 5x_{3}=& 3,\\ x_{1}-& x_{2} +&2x_{3}= & 1,\\ x_{1}-&2x_{2} - & x_{3}= & 2. \end{matrix}\right.

对增广矩阵施以行初等变换:

 于是得原方程组的解为:

\left\{\begin{matrix} x_{1}=\frac{10}{7}\\ x_{2}=-\frac{1}{7}\\ x_{3}=-\frac{2}{7} \end{matrix}\right.

这里需要解释一下:为了计算方便,用r_{i}表示矩阵的第i行,交换i,j两行,记为r_{i}\leftrightarrow r _{j};数K乘第i行,记为kr_{i}。 

若一个矩阵每个非零行的非零首元都出现在上一行非零首元的右边,同时没有一个非零首元出现在零行之下,则称这种矩阵为行阶梯形矩阵。若行阶梯形矩阵的每一个非零行的非零首元都是1,且非零首元所在列的其余元都为0,则称这种矩阵为简化行阶梯形矩阵。例如下面两个矩阵都是行阶梯形矩阵:

A=\begin{pmatrix} 1 & 2& 0 & 0&2 \\ 0 & 0 & 1& 0 &-1 \\ 0&0 &0 &1 & 0 \end{pmatrix},B=\begin{pmatrix} 1 & 3 &0 &-1 \\ 0&2 &1 &0 \\ 0&0 &0 & 1 \end{pmatrix}

且A为简化行阶梯形矩阵,而B不是简化行阶梯形矩阵

显然,用有限次行初等变换可以吧任何矩阵化为一个简化行阶梯形矩阵,并且所得到的简化行阶梯形矩阵是唯一的。

为了作一般的讨论,不妨假设\bar{A}=(A,b)化为如下的简化行阶梯形矩阵:

 

由矩阵易知:方程组有解的充要条件是d_{r+1}=0.这是因为当d_{r+1}\neq 0时,r+1行对应的方程0x_{1}+0x_{2}+...+0x_{n}=d_{r+1}是无解的.

当 d_{r+1}=0.时,即在有解的情况下,又分两种情况:

(1)当r=n时,有唯一解

(2)当r<n时,有无穷多个解

将上述结果总结为如下定理:

定理1   设n元非齐次方程组AX=b,对它的增广矩阵施以行初等变换,得到简化行阶梯形矩阵,若d_{r+1}\neq 0,则方程无解;若d_{r+1}=0,则方程有解,而且当r=n时有唯一解,当r<n时有无穷多解

需要注意的是:用不同的消元步骤,将增广矩阵化为行阶梯形矩阵时,行阶梯形矩阵的形式不是唯一的,但行阶梯形矩阵的非零行的行数是唯一确定的,当方程有解时,表明解中任意常数的个数是相同的,但解的表达式不是唯一的,然而每一种解的表达式中,包含的无穷解的集合又是相等的

定理2  设m个n元方程组成的齐次线性方程组AX=0,若m<n,则方程组必有非零解。 

 如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价,记作A\cong B。若使用的是行(列)初等变换,则称A与B行(列)等价。

矩阵的等价关系具有:

1)反身性   A\cong A

2)对称性  若A\cong B,则B\cong A

3)传递性  若A\cong B,B\cong C,A\cong C

三,初等矩阵

 我们可以把矩阵的初等变换表示为矩阵的乘法运算。

比如:设A=\begin{pmatrix} a_{11} &a_{12} & ...& a_{1n}\\ a_{21}&a_{22} &... & a_{2n}\\ a_{31}&a_{32} &... & a_{3n} \end{pmatrix},则

\begin{pmatrix} 0 & 1 & 0\\ 1& 0&0 \\ 0& 0& 1 \end{pmatrix}\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21}&a_{22} & ... & a_{2n}\\ a_{31}& a_{32} &... & a_{3n} \end{pmatrix}=\begin{pmatrix} a_{21} &a_{22} &... & a_{2n}\\ a^{11} & a_{12} & ... &a_{1n} \\ a_{31} &a_{32} & ... & a_{3n} \end{pmatrix},

\begin{pmatrix} 1& 0& 0\\ 0 & c&0 \\ 0& 0& 1 \end{pmatrix}\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21}&a_{22} & ... & a_{2n}\\ a_{31}& a_{32} &... & a_{3n} \end{pmatrix}=\begin{pmatrix} a_{11} &a_{12} &... & a_{1n}\\ ca^{21} & ca_{22} & ... &ca_{2n} \\ a_{31} &a_{32} & ... & a_{3n} \end{pmatrix},

\begin{pmatrix} 1 & 0 & 0\\ 0& 1&0 \\ c& 0& 1 \end{pmatrix}\begin{pmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21}&a_{22} & ... & a_{2n}\\ a_{31}& a_{32} &... & a_{3n} \end{pmatrix}=\begin{pmatrix} a_{11} &a_{12} &... & a_{1n}\\ a^{21} & a_{22} & ... &a_{2n} \\ ca_{11+}a_{31} &ca_{12}+a_{32} & ... & ca_{1n}+a_{3n} \end{pmatrix},

由此可见,等式右边等价于分别使A作了三种行初等变换(第1,2行交换;第2行乘c;第1行乘c加到第3行)。这三个三阶矩阵本身又是单位矩阵作同样的行初等变换而得到的,它们称为初等矩阵。上面三个式子表明A的行初等变换可以表示成相应的初等矩阵左乘A的运算,下面给出初等矩阵的一般定义。

定义2  将单位矩阵作一次初等变换得到的矩阵,称为初等矩阵。

 由矩阵乘法定义可得如下定理

定理3  对一个m×n矩阵A作一次行初等变换就相当于在A的左边乘上相应的m×m初等矩阵;对A作一次列初等变换就相当于在A的右边乘上相应的n×m初等矩阵

应用实例一:卷积

应用实例二:计算机断层成像


下一篇:逆矩阵 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李思雨.lsy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值