目录
对于一般线性方程组,我们要讨论的问题是:它在什么条件下有解?如果有解,有多少解?又如何求出其全部解?所谓解方程组,就是当方程组有解时求出它的全部解,当它无解时判明它无解。
一,高斯消元法
高斯消元法的目的:解多元方程
高斯消元法的解题过程:反复施行初等变换
那么,什么是初等变换?初等变换可以归纳为以下的三种变换:
1)交换两个方程的位置
2)用一个非零数乘某一个方程
3)把一个方程的适当倍数加到另一个方程上去
我们来举一个例子来说明:
例1 解线性方程组
解:将方程组中的第一个与第三个方程交换位置(用上述第一种变换),得方程组
将方程组的第一个方程的-1倍加到第二个方程,然后将第一个方程的-3倍加到第三个方程(用上述第二种变换),得方程组
再将方程组中第二个方程组的-5倍加到第三个方程(用上述第三种变换),得方程组
这就是 高斯消元的过程,于是得方程组的唯一解为
二,矩阵的初等变换
看如下线性方程组
我们可以将方程组的系数与常数项用矩阵来表示,整个消元的过程都可在矩阵上进行,为此,我们引入了矩阵的初等变换的概念。
矩阵的行(列)初等变换指对矩阵施以下列三种变换:
1)交换两行(列)的位置
2)用一非零数乘某一行(列)的所有元
3)把矩阵的某一行(列)的适当倍数加到另一行(列)上去
我们来举个例子说明
先解例1的方程组
对增广矩阵施以行初等变换:
于是得原方程组的解为:
这里需要解释一下:为了计算方便,用表示矩阵的第i行,交换i,j两行,记为
数K乘第i行,记为
。
若一个矩阵每个非零行的非零首元都出现在上一行非零首元的右边,同时没有一个非零首元出现在零行之下,则称这种矩阵为行阶梯形矩阵。若行阶梯形矩阵的每一个非零行的非零首元都是1,且非零首元所在列的其余元都为0,则称这种矩阵为简化行阶梯形矩阵。例如下面两个矩阵都是行阶梯形矩阵:
且A为简化行阶梯形矩阵,而B不是简化行阶梯形矩阵
显然,用有限次行初等变换可以吧任何矩阵化为一个简化行阶梯形矩阵,并且所得到的简化行阶梯形矩阵是唯一的。
为了作一般的讨论,不妨假设化为如下的简化行阶梯形矩阵:
由矩阵易知:方程组有解的充要条件是.这是因为当
时,r+1行对应的方程
是无解的.
当 .时,即在有解的情况下,又分两种情况:
(1)当r=n时,有唯一解
(2)当r<n时,有无穷多个解
将上述结果总结为如下定理:
定理1 设n元非齐次方程组AX=b,对它的增广矩阵施以行初等变换,得到简化行阶梯形矩阵,若,则方程无解;若
,则方程有解,而且当r=n时有唯一解,当r<n时有无穷多解
需要注意的是:用不同的消元步骤,将增广矩阵化为行阶梯形矩阵时,行阶梯形矩阵的形式不是唯一的,但行阶梯形矩阵的非零行的行数是唯一确定的,当方程有解时,表明解中任意常数的个数是相同的,但解的表达式不是唯一的,然而每一种解的表达式中,包含的无穷解的集合又是相等的
定理2 设m个n元方程组成的齐次线性方程组AX=0,若m<n,则方程组必有非零解。
如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价,记作。若使用的是行(列)初等变换,则称A与B行(列)等价。
矩阵的等价关系具有:
1)反身性
2)对称性 若
,则
3)传递性 若
则
三,初等矩阵
我们可以把矩阵的初等变换表示为矩阵的乘法运算。
比如:设,则
由此可见,等式右边等价于分别使A作了三种行初等变换(第1,2行交换;第2行乘c;第1行乘c加到第3行)。这三个三阶矩阵本身又是单位矩阵作同样的行初等变换而得到的,它们称为初等矩阵。上面三个式子表明A的行初等变换可以表示成相应的初等矩阵左乘A的运算,下面给出初等矩阵的一般定义。
定义2 将单位矩阵作一次初等变换得到的矩阵,称为初等矩阵。
由矩阵乘法定义可得如下定理
定理3 对一个m×n矩阵A作一次行初等变换就相当于在A的左边乘上相应的m×m初等矩阵;对A作一次列初等变换就相当于在A的右边乘上相应的n×m初等矩阵
应用实例一:卷积
应用实例二:计算机断层成像
下一篇:逆矩阵