基于人脸识别的门禁系统设计

本系统以STM32C8T6为微控制器,LCD屏为人机交互窗口,openMV4摄像头为图像采集设备。STM32通过串口通信让Openmv进行人脸识别,将结果返回后控制语音播报,同时控制继电器开门。文中给出Openmv程序源码及STM32程序,后续可优化加入指纹和密码解锁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

本系统主要以STM32C8T6作为微控制器,以LCD屏为人机交互窗口,以openMV4摄像头为图像采集设备。利用STM32C8T6通过串口通信发送数据给Openmv,让Openmv进行人脸识别,并且将识别结果返回给STM32,并且发送数据给语音模块,进行语音播报;同时STM32IO口控制继电器,给电磁锁通入电压打开门。


一、Openmv程序源码

这部分代码包括Openmv与STM32的串口通信,人脸识别,人脸特征存储。
串口通信

uart = UART(3, 115200)
uart.init(115200, bits=8, parity=None, stop=1)  #8位数据位,无校验位,1位停止位
num1 = 6
#============串口发送======================
def send_data_packet(c):
    temp = struct.pack("<bb",                #格式为俩个字符俩个整型
                   0xAA,                       #帧头1
                   c)                          #人脸识别 01
#                   x, # up sample by 4    #数据1
#                   y) # up sample by 4    #数据2
    uart.write(temp)                           #串口发送

人脸识别

#==============人脸识别====================
def face_recognition():
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
    sensor.set_framesize(sensor.LCD) # or sensor.QQVGA (or others)
    sensor.skip_frames(10) #  Let new settings take affect.
    sensor.skip_frames(time = 1000) #等待5s
    lcd.init() # Initialize the lcd screen.
    NUM_SUBJECTS = 1              #图像库中不同人数,一共6人
    NUM_SUBJECTS_IMGS = 10        #每人有20张样本图片
    # 拍摄当前人脸。
    img = sensor.snapshot()
    #img = image.Image("face/%s/1.pgm"%(SUB))
    lcd.display(img)
    pyb.LED(RED_LED_PIN).on()
    sensor.skip_frames(time = 2000) # Give the user time to get ready.等待3s,
    pyb.LED(RED_LED_PIN).off()     #拍照指示灯
    d0 = img.find_lbp((0, 0, img.width(), img.height()))
    #d0为当前人脸的lbp特征
    img = None
    pmin = 999999
    num=0

    for s in range(1, NUM_SUBJECTS+1):
      dist = 0
      for i in range(2, NUM_SUBJECTS_IMGS+1):
          img = image.Image("singtown/s%d/%d.pgm"%(s, i))
          d1 = img.find_lbp((0, 0, img.width(), img.height()))
          #d1为第s文件夹中的第i张图片的lbp特征
          dist += image.match_descriptor(d0, d1)#计算d0 d1即样本图像与被检测人脸的特征差异度。
      print("Average dist for subject %d: %d"%(s, dist/NUM_SUBJECTS_IMGS))
      #pmin = min(pmin, dist/NUM_SUBJECTS_IMGS, s)#特征差异度越小,被检测人脸与此样本更相似更匹配。
      if (dist/NUM_SUBJECTS_IMGS)<pmin:
          pmin=(dist/NUM_SUBJECTS_IMGS)
          num=s
      print(pmin)

    lcd.display(img)
    if(pmin > 10000):
      print("未能识别,请再次尝试")
      send_data_packet(0x02)
    else:

      send_data_packet(0x01)
      print("欢迎")
#        if(num == 2):
#           send_data_packet(0x03)
#           print("识别成功")
    print("发送成功")

人脸拍照特征存储

#========拍照并保存到识别库的程序代码=====================
def take_photos():
    sensor.reset() # Initialize the camera sensor.
    sensor.set_pixformat(sensor.GRAYSCALE) # or sensor.GRAYSCALE
    sensor.set_framesize(sensor.LCD) # or sensor.QQVGA (or others)
    sensor.skip_frames(10) # Let new settings take affect.
    sensor.skip_frames(time = 2000)
    lcd.init() # Initialize the lcd screen.
    num2 = 1 #设置被拍摄者序号,第一个人的图片保存到s1文件夹,第二个人的图片保存到s2文件夹,以此类推。每次更换拍摄者时,修改num值。

    n = 10 #设置每个人拍摄图片数量。

    #连续拍摄n张照片,每间隔3s拍摄一次。
    while(n):
            #红灯亮
            pyb.LED(RED_LED_PIN).on()
            sensor.skip_frames(time = 2000) # Give the user time to get ready.等待3s,准备一下表情。

            #红灯灭,蓝灯亮
            pyb.LED(RED_LED_PIN).off()
            pyb.LED(BLUE_LED_PIN).on()

            #保存截取到的图片到SD卡
            print(n)
            sensor.snapshot().save("singtown/s%s/%s.pgm" % (num2, n) ) # or "example.bmp" (or others)
            lcd.display(sensor.snapshot())
            n -= 1

            pyb.LED(BLUE_LED_PIN).off()
            print("拍照并保存成功!进行下一张")
            if n==0:
                send_data_packet(0x03)  #发送完成

二、STM32程序

1.判断openmv发送的数据

直接使用串口判断Openmv发送的数据,若数据为成功,则控制另一个串口发送指令给语音播报模块,进行说明。

2.作品实物图

照的时候还没有进行包装,看着有点乱。
在这里插入图片描述


总结

整体功能能实现,后续可进行优化设计,可加入指纹和密码解锁等。

Openmv人脸识别门禁系统基于Openmv4 H7的开发板,通过修改人脸识别代码实现。该系统可以检测人脸上的主要面部特征点的位置和眼睛、嘴巴等主要器官的形状信息。其中,使用了SD卡存储的人脸图像作为模板,利用特异性差异进行匹配,从而实现人脸识别。一旦识别到对应的人物,系统会发送信息给主控,然后主控会发送播报内容给SYN6988语音合成模块,通过连接的喇叭进行语音播报。 然而,在实际使用中,该系统可能会遇到一些问题。例如,其中之一是串口通信的问题。虽然在串口助手上通信正常,但与单片机通信时会出现问题。具体来说,当使用UartWrite(char)函数只发送一个字符时,串口助手上显示正常,但单片机没有任何反应。针对这个问题,有人尝试使用Openmv的颜色识别示例来改进串口通信,但是如果仅需要传输一个字符,会较为复杂。因此,有人改为使用引脚模拟按键的电平来实现通信。 综上所述,Openmv人脸识别门禁系统是基于Openmv4 H7的开发板,利用人脸检测和面部关键特征检测技术实现的。它可以通过匹配存储在SD卡中的人脸图像识别对应的人物,并通过语音播报模块进行相应的提示。然而,在使用过程中可能会遇到一些问题,如串口通信的困扰,需要根据具体情况进行调试和改进。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [人脸识别系统程序设计](https://download.csdn.net/download/Jane873813318/2369522)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于OpenMV的智能人脸识别语音系统STM32F407)](https://blog.csdn.net/lu_fresh_student/article/details/123271151)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值