Envi5.3对Landsat8 OLI collection2进行辐射校准和大气校正预处理

本文详细介绍了如何使用Envi5.3对Landsat8 OLI Collection2数据进行辐射校准和大气校正的步骤。首先,通过修改MTL.txt文件正确打开Landsat8文件,接着运用radiometric calibration工具进行辐射校准。随后,进行大气校正,选择合适的模型和参数,如大气模型、气溶胶类型,并利用ENVI自带的全球DEM数据进行高程计算。最后,作者指出该过程可能耗时较长,鼓励读者交流讨论和指正错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.打开Landsat8文件

解压下载的文件,然后利用envi打开MTL.txt文件

 如果打不开,将txt文件中的GROUP = Landsat_METADATA_FILE修改为GROUP = L1_METADATA_FILE,共有开头和结尾两处需要修改,再次重新打开。

 

2.Landsat8辐射校准

打开radiometric correction工具里面的radiometric calibration,弹出后点击OK

 

这里有两处需要修改,然后确定输出路径,点击OK,这个过程很快就完成,不用过多的等待

 

3. Landsat8大气校正

点击大气校正工具

### ENVI 大气校正报错解决方案 在处理遥感影像的大气校正时,可能会遇到各种错误。为了有效解决问题并成功完成大气校正过程,在ENVI软件中可以采取以下措施: #### 错误排查与验证输入数据 确保用于大气校正的输入文件格式正确无误,并且符合ENVI的要求[^1]。检查图像元数据是否完整,特别是传感器类型、成像时间以及地理位置信息等关键参数。 #### 更新安装包插件版本 确认所使用的ENVI及其附加模块均为最新稳定版。旧版本可能存在已知漏洞或不兼容情况,这可能是导致程序运行失败的原因之一。定期访问Harris Geospatial Solutions官方网站获取更新通知并及时升级软件环境。 #### 参数设置调整 对于FLAASH模型而言,适当调节其内部配置选项有助于提高计算成功率。例如,合理设定地面高程范围、能见度估计值以及其他辅助变量;当面对复杂地形区域时,建议启用DEM补偿功能来增强精度表现。 ```python import envi envi.start() session = envi.Session() # 加载原始影像 image_file_path = "path_to_your_image" raw_image = session.openRaster(image_file_path) # 设置大气校正参数 atm_corr_params = { 'model': 'FLAASH', # 或者其他支持的模型名称 'elevation_min': min_elev, 'elevation_max': max_elev, 'visibility': vis_value, } # 执行大气校正操作 corrected_image = raw_image.applyAtmosphericCorrection(atm_corr_params) ``` 如果上述方法仍无法解决具体问题,则可能需要进一步分析日志记录中的提示信息,或者联系技术支持团队寻求帮助。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值