LangchainChatChat+Xinference推理大模型环境搭建rag教程

搭建Xinference的AI环境

搭建xinference

#新建虚拟环境xinference

 conda create -n xinference python=3.10

 conda activate xinference

 conda create -n xinference python=3.10

#安装xinference:

pip install "xinference[sglang]"  -i https://pypi.tuna.tsinghua.edu.cn/simple/

这一步要安装的包比较多,需要多要等一会,等待时间看服务器的网速

 

还需要下载这个whl包,然后传服务器上去手动安装(清华源没有这个包,而且,要翻墙,所以只能手动下载,然后传上去)

https://flashinfer.ai/whl/cu124/torch2.4/flashinfer/

#安装

pip install ./flashinfer-0.1.6+cu124torch2.4-cp310-cp310-linux_x86_64.whl

此外还有几个推理的时候常用到的库,建议一起装了

pip install torchao

pip install sentence-transformers

pip install autoawq

pip install -U bitsandbytes

启动xinference

#激活环境

conda activate xinference

 

#启动界面,host和port分别输入IP和端口:

xinference-local --host 10.12.2.110 --port 1998

回显如下,就表示成功:

 

浏览器输入地址:10.12.2.110:1998可以去下载和启动模型:

 

举个例子:

按照上面的方式,下载一个embedding模型,一个LLM模型。

如下,点击cached查看已经下载好的:

启动模型

按照如下方式启动embedding和LLM模型

 

搭建chatchat

#新建python3.10的虚拟环境

conda create -n chatchat python=3.10

conda activate chatchat

#安装langchainchatchat

pip install langchain-chatchat -U

#安装xinference引擎的langchainchatchat

pip install "langchain-chatchat[xinference]" -U

#修改一个库的版本(必须修改,否则有BUG):

pip install httpx==0.27.2

 

启动chatchat

#激活环境:

conda activate chatchat



#创建工作目录/home/llm/chatchat_data

mkdir -p /home/llm/chatchat_data



export CHATCHAT_ROOT=/home/llm/chatchat_data



#初始化(只需要执行一次):

 chatchat init

回显如下则成功:

#启动完成以后,工作目录/home/llm/chatchat_data中就生成了如下的配置文件

ll chatchat_data/

 

 

修改里面的配置文件,修改如下。

修改为自己使用的LLM和embedding的名字

修改chatchat的前端和API的启动IP和端口

这个修改为xinference的启动IP和端口:

 

在工作目录的knowledge_base/samples/content/文件夹下,也就是目录/home/llm/chatchat_data/data/nowledge_base/samples/content/下的文件夹就是知识库内容存放的地方,

如下,把文档传入文件夹下就可以了:

 

#初始化知识库(依赖embedding)(第一次很慢,是正常的。因为要下载nltk_data,第一次以后就会很快)

chatchat kb -r

#启动chatchat

chatchat start -a

 

结果展示:

浏览器访问刚才配置文件里面自己写的里面的前端IP+端口就,就可以交互了,我的是http://10.12.2.110:8501

这个有很多功能rag,系统命令,数据库交互,可以多试试

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值