证明贝祖定理

定理2.2:设 a 和 b 为非零整数,存在整数 r 和 s 使得:
g c d ( a , b ) = a r + b s gcd(a, b) = ar + bs gcd(a,b)=ar+bs
而且,a 与 b 的最大公因子是惟一的。称 r 和 s 为 Bézout 系数。

证明:
构造集合 S = S = S= { a m + b n : m , n ∈ Z 且 a m + b n > = 0 am+bn:m,n∈Z且am+bn>=0 am+bn:m,nZam+bn>=0}。
显然集合 S S S非空,根据良序原则,取其中最小值 d = a x + b y d=ax+by d=ax+by.
下面证明 d d d a a a b b b的公因子.
根据除法定理,有 a = q d + r , 0 < = r < d a = qd+r,0<=r<d a=qd+r0<=r<d q ∈ Z q∈Z qZ,则有 r = a − q d = a − q ( a x + b y ) = ( 1 − q x ) a + ( − q y ) b ∈ S r = a - qd = a - q(ax+by) = (1-qx)a + (-qy)b∈S r=aqd=aq(ax+by)=(1qx)a+(qy)bS,又因为 d d d S S S中的最小值,所以 r = 0 r = 0 r=0,则 a ∣ d a|d ad,同理 b ∣ d b|d bd。所以 d d d a a a b b b的公因子。
下面证明如果存在 a a a b b b的公因子 d ′ d′ d,则 d ′ ∣ d d′|d dd
设d’是a和b的公因子,则有 d = a x + b y d=ax+by d=ax+by = d ′ ( a ′ x + b ′ y ) d'(a'x+b'y) d(ax+by)。所以 d ′ ∣ d d′|d dd
所以 d d d a a a b b b的最大公因子,即 d = g c d ( a , b ) d = gcd(a,b) d=gcd(a,b)
所以贝祖定理成立

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值