定理2.2:设 a 和 b 为非零整数,存在整数 r 和 s 使得:
g c d ( a , b ) = a r + b s gcd(a, b) = ar + bs gcd(a,b)=ar+bs
而且,a 与 b 的最大公因子是惟一的。称 r 和 s 为 Bézout 系数。
证明:
构造集合 S = S = S= {
a m + b n : m , n ∈ Z 且 a m + b n > = 0 am+bn:m,n∈Z且am+bn>=0 am+bn:m,n∈Z且am+bn>=0}。
显然集合 S S