证明贝祖定理

定理2.2:设 a 和 b 为非零整数,存在整数 r 和 s 使得:
g c d ( a , b ) = a r + b s gcd(a, b) = ar + bs gcd(a,b)=ar+bs
而且,a 与 b 的最大公因子是惟一的。称 r 和 s 为 Bézout 系数。

证明:
构造集合 S = S = S= { a m + b n : m , n ∈ Z 且 a m + b n > = 0 am+bn:m,n∈Z且am+bn>=0 am+bn:m,nZam+bn>=0}。
显然集合 S S

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值