cinta作业2:gcd和egcd(bezout定理)

1、给出Bezout定理的完整证明

在这里插入图片描述
构造集合
S = { a m + b n : m , n ∈   Z 且 a m + b n > 0 } S= \left\{am+bn:m,n\in\ \mathbb{Z} 且am+bn> 0\right\} S={am+bn:mn Zam+bn>0}
显然集合 S S S非空,根据良序原则, S S S中存在最小值 d d d,令 d = a r + b s d=ar+bs d=ar+bs
以下分两部分证明:

1)证明d是a、b的公因子

由除法定理,设 a = d q + r ′ a=dq+r' a=dq+r, 且 0 ≤ r ′ < d 。 0\leq r'<d。 0r<d则有
r ′ = a − d q = a − ( a r + b s ) q = a ( 1 − r q ) + b ( − s q ) r'=a-dq=a-(ar+bs)q=a(1-rq)+b(-sq) r=adq=a(ar+bs)q=a(1rq)+b(sq)
显然, ( 1 − r q ) , ( − s q ) ∈   Z (1-rq),(-sq)\in\ \mathbb{Z} (1rq),(sq) Z ,且因为 r ′ > 0 r'>0 r>0 ,则 r ′ ∈   S 。 r'\in\ S。 r S

又因为 r ′ < d r'<d r<d,这与 d d d S S S中最小元素相矛盾,因此 r ′ = 0 r'=0 r=0
d ∣ a d\mid a da,同理也可得 d ∣ b d\mid b db,故 d d d a a a b b b的公因子。

2)证明d是所有公因子中最大的

设存在另一个 a 、 b a、b ab的公因子 d ′ d' d,则有 a = d ′ t a=d't a=dt b = d ′ k b=d'k b=dk t , k ∈   Z t,k\in\ \mathbb{Z} t,k Z
那么 d = a r + b s = d ′ t r + d ′ k s = d ′ ( t r + k s ) d=ar+bs=d'tr+d'ks=d'(tr+ks) d=ar+bs=dtr+dks=d(tr+ks)
显然, ( t r + k s ) ∈   Z (tr+ks)\in\ \mathbb{Z} (tr+ks) Z,则 d ′ ∣ d d'\mid d dd成立,故d是d是所有公因子中最大的。

综上,d=gcd(a,b)成立,又因d=ar+bs,即gcd(a,b)=ar+bs成立

2、实现GCD算法的迭代版本。

//原理:a>=b,有gcd(a,b)=gcd(b,a mod b)
#include<iostream>
using namespace std;
int gcd(int a,int b);

int main()
{
    int a,b;
    cin>>a>>b;
    cout<<a<<"和"<<b<<"的最大公因数是"<<gcd(a,b)<<endl;
}

int gcd(int a,int b)
{
    //确保a>b
    int temp,r;
    if(a<b)
    {
        temp=b;
        b=a;
        a=temp;
    }

    //gcd算法
    while(b!=0)
    {
        r=a%b;
        a=b;
        b=r;
    }
    return a;

}

3、实现EGCD算法。输入:a、b两个整数,输出:r、s、d三个整数,满足ar + bs =d。

#include<iostream>
using namespace std;
int egcd(int a,int b,int *r,int *s);

int main()
{
    int a,b,r,s;
    cin>>a>>b;
    cout<<a<<"和"<<b<<"的最大公因数是"<<egcd(a,b,&r,&s)<<endl;
    cout<<"bezout系数r="<<r<<" s="<<s<<endl;
}

int egcd(int a,int b,int *r,int *s)
{
    //确保a>b
    int temp;
    if(a<b)
    {
        temp=b;
        b=a;
        a=temp;
    }

    //egcd算法
    int r0=1,r1=0,s0=0,s1=1,q,temp0,temp1,temp2;
    while(b!=0)
    {
        //进行等式(矩阵)右边的运算,实际上也就是普通的gcd算法,但是这里还把商q记录了起来,用于计算bezout系数
        q=a/b;
        temp0=a%b;//必须要有一个容器暂时存放余数,不然没法进行
        a=b;
        b=temp0;

        //根据记录下来的q,完成等式(矩阵)左边的运算,计算计算bezout系数
        temp1=r0;
        temp2=s0;//必须要有一个容器暂时存放前一个等式的系数,不然没法进行
        r0=r1;
        s0=s1;
        r1=temp1-r1*q;
        s1=temp2-s1*q;
    }
    *r=r0;
    *s=s0;
    return a;
}

4、实现一种批处理版本的GCD算法,即,给定一个整数数组,输出其中所有整数的最大公因子。输入:一个整数数组a;输出:一个整数d,是a数组中所有整数的最大公因子。

#include<iostream>
using namespace std;
int gcd(int a, int b);
int arr_gcd(int a[], int num);
#define size 10 //数组输入的最大长度

int main()
{
    int a[size], cnt=0;
    cout << "请输入一个数组:(手动输入EOF表示输入结束)" << endl;
    for (int i = 0; i < size; i++)
    {
        if (!(cin >> a[i]))
        {
            cnt = i;
            break;
        }
    }
    cout << "这些数的最大公因数为:" << arr_gcd(a, cnt) << endl;
}

int arr_gcd(int a[], int num)
{
    //由于数组传进来的是一个地址,函数内对数组进行修改的话,原数组也会被改动
    //解决方法:先创建一个数组gcd_arr用来拷贝数组a
    int gcd_arr [size];
    for (int i = 0; i < num; i++)
    {
        gcd_arr[i] = a[i];
    }
    for (int i = 0; i < num - 1; i++)
    {
        gcd_arr[i + 1] = gcd(gcd_arr[i], gcd_arr[i + 1]);
    }
    return gcd_arr[num - 1];
}

int gcd(int a, int b)
{
    //确保a>b
    int temp, r;
    if (a < b)
    {
        temp = b;
        b = a;
        a = temp;
    }

    //gcd算法
    while (b != 0)
    {
        r = a % b;
        a = b;
        b = r;
    }
    return a;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值