数论——贝祖定理证明及代码实现

首先,引入贝祖定理的定义:

裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质充分必要条件是存在整数x,y使ax+by=1.

证明:

我们首先需要找出a和b的 gcd(a,b),在求解 gcd(a,b)时,可用欧几里得算法(辗转相除法)对此进行求解:

a=eval(input())
b=eval(input())
if a<b:
    t=a
    a=b
    b=t
    
a1=a
b1=b

while a%b!=0:  #判断a%b是否存在余数
    temp=a%b
    a=b
    b=temp 
    
print(b)

一、在求出a和b的最大公约数后,我们便得知d的数值。接下来,我们先讨论 a*x+b*y=k*d的问题

由于我们已经知道:

a % d == 0

b % d == 0

所以我们设a=k1*d ; b=k2*d,于是原式等同于 k1*d*x+k2*d*y=k*d,消去d,当k=k1*x+k2*y时即满足条件,由于5个值都为变量,可以认为设定成立,原式得证。

二、我们求证ax+by=d成立

由于a=k1*d ; b=k2*d,所以k1*d*x+k2*d*y=d,消去d,即得到k1*x+k2*y=1

其中 k1=a/d

        k2=b/d

此两数我们都可以解出,于是,我使用暴力法求解:在循环中,i++,当(i*k1)//k2==1时,跳出循环并输出

代码:

a=a1/b
b=b1/b
if b==1:#需要考虑是否第二个就为a和b的最大公约数
    i=1
    m=a-1
else:
    i=1
    while i:
        if (i*a)%b==1:#暴力求解正确的x值和y值
            break
        i=i+1
    m=(i*a)//b
print(i)
print(-m) #由于第一个代码中已经将a,b从大到小排列,所以第一个值必为正,第二个值必为负

最终总代码为:

import gmpy2

a=eval(input())
b=eval(input())
if a<b:
    t=a
    a=b
    b=t
    
a1=a
b1=b

while a%b!=0:
    temp=a%b
    a=b
    b=temp 
    
print(b)
a=a1/b
b=b1/b
if b==1:
    i=1
    m=a-1
else:
    i=1
    while i:
        if (i*a)%b==1:
            break
        i=i+1
    m=(i*a)//b
print(i)
print(-m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值