cinta作业6:拉格朗日定理

1. 设 G \mathbb{G} G是群, H \mathbb{H} H G \mathbb{G} G的子群。任取 g 1 , g 2 ∈ G g_{1},g_{2}\in\mathbb{G} g1,g2G,则 g 1 H = g 2 H g_{1}\mathbb{H}=g_{2}\mathbb{H} g1H=g2H当且仅当 g 1 − 1 g 2 ∈ H g_{1}^{-1}g_{2}\in\mathbb{H} g11g2H

充分性证明:

∃ h 1 , h 2 ∈ H \exists h_{1},h_{2}\in\mathbb{H} h1,h2H,使得 g 1 h 1 = g 2 h 2 g_{1}h_{1}=g_{2}h_{2} g1h1=g2h2,则有 h 1 = g 1 − 1 g 2 h 2 h_{1}=g_{1}^{-1}g_{2}h_{2} h1=g11g2h2, 最终可得 h 1 h 2 − 1 = g 1 − 1 g 2 h_{1}h_{2}^{-1}=g_{1}^{-1}g_{2} h1h21=g11g2,而 h 1 h 2 − 1 h_{1}h_{2}^{-1} h1h21由于封闭性,一定属于群 H \mathbb{H} H ,故 g 1 − 1 g 2 ∈ H g_{1}^{-1}g_{2}\in\mathbb{H} g11g2H,证毕

必要性证明:

由于 g 1 − 1 g 2 ∈ H g_{1}^{-1}g_{2}\in\mathbb{H} g11g2H,则 ∃ h ∈ H \exists h\in\mathbb{H} hH,使得 g 1 − 1 g 2 = h g_{1}^{-1}g_{2}=h g11g2=h,则有 g 2 = g 1 h g_{2}=g_{1}h g2=g1h,即 g 2 ∈ g 1 H g_{2}\in g_{1}\mathbb{H} g2g1H,又由陪集性质可得 g 1 H = g 2 H g_{1}\mathbb{H}=g_{2}\mathbb{H} g1H=g2H,证毕


2. 如果 G \mathbb{G} G是群, H \mathbb{H} H G \mathbb{G} G的子群,且 [ G : H ] = 2 [\mathbb{G}:\mathbb{H}]=2 [G:H]=2,证明对任意 g ∈ G g\in\mathbb{G} gG g H = H g g\mathbb{H}=\mathbb{H}g gH=Hg

  • g ∈ H g\in\mathbb{H} gH,由于封闭性, g H = H g = H g\mathbb{H}=\mathbb{H}g=\mathbb{H} gH=Hg=H,证毕
  • g ∉ H g\notin\mathbb{H} g/H,由于陪集性质, g H ≠ H g\mathbb{H}\neq\mathbb{H} gH=H H g ≠ H \mathbb{H}g\neq\mathbb{H} Hg=H
    又因为 [ G : H ] = 2 [\mathbb{G}:\mathbb{H}]=2 [G:H]=2,即群 G \mathbb{G} G 被子群 H \mathbb{H} H 的两个陪集划分,其中一个陪集是 H \mathbb{H} H 本身,另一个陪集记为 H ′ \mathbb{H'} H
    而又因为作为陪集的 g H , H g g\mathbb{H},\mathbb{H}g gH,Hg都是不等于 H \mathbb{H} H的,则 g H , H g g\mathbb{H},\mathbb{H}g gH,Hg一定都等于 H ′ \mathbb{H'} H ,即 g H = H g = H ′ g\mathbb{H}=\mathbb{H}g=\mathbb{H'} gH=Hg=H,证毕

3. 如果群 H \mathbb{H} H是群 G \mathbb{G} G的真子群,证明 ∣ H ∣ ≤ ∣ G ∣ / 2 |\mathbb{H}| \leq|\mathbb{G}|/2 HG/2

根据拉格朗日定理, ∣ G ∣ / ∣ H ∣ = k |\mathbb{G}|/|\mathbb{H}|=k G/H=k k k k为正整数
又因为群 H \mathbb{H} H是群 G \mathbb{G} G的真子群,则 k ≠ 1 k\neq1 k=1,故有 ∣ G ∣ / ∣ H ∣ = k ≥ 2 |\mathbb{G}|/|\mathbb{H}|=k\geq2 G/H=k2 成立,转化后可得 ∣ H ∣ ≤ ∣ G ∣ / 2 |\mathbb{H}| \leq|\mathbb{G}|/2 HG/2,证毕


4. 设群 G \mathbb{G} G是阶为 p q pq pq的群,其中 p p p q q q是素数。证明 G \mathbb{G} G的任意真子群是循环群

因为 p , q p,q p,q 均是素数,能整除 p q pq pq 的只有 1 , p , q , p q 1,p,q,pq 1,p,q,pq,则根据拉格朗日定理,则其真子群的阶有 1 , p , q 1,p,q 1,p,q

  • 真子群阶为 1 1 1 时,即为平凡子群,显然是循环群
  • 真子群阶为 p , q p,q p,q 时,根据拉格朗日定理推论,素数阶数的有限群一定是循环群

5. 用群论证明费马小定理和欧拉定理

费马小定理

构造在模数为素数 p p p 下的整数乘法群 Z p ∗ \mathbb{Z}_{p}^{*} Zp ,其阶数为 p − 1 p-1 p1

任取元素 a ∈ Z p ∗ a\in\mathbb{Z}_{p}^{*} aZp,根据拉格朗日定理,则有 o r d ( a ) ∣ p − 1 ord(a)\mid p-1 ord(a)p1 ,即 p − 1 = k ∗ o r d ( a ) p-1=k*ord(a) p1=kord(a) k k k为正整数,则 a p − 1 {a}^{p-1} ap1 m o d mod mod p = a k ∗ o r d ( a ) p={a}^{k*ord(a)} p=akord(a) m o d mod mod p = 1 k m o d p={1}^{k} mod p=1kmod p = 1 p=1 p=1,故得到费马小定理: a p − 1 ≡ 1 a^{p-1}\equiv 1 ap11 ( m o d mod mod p p p)

欧拉定理

构造在模数为 n n n 下的整数乘法群 Z n ∗ \mathbb{Z}_{n}^{*} Zn Z n ∗ = { a ∈ [ 1 … n − 1 ] 且 g c d ( a , n ) = 1 } \mathbb{Z}_{n}^{*}=\left \{ a\in[1…n-1]且gcd(a,n)=1\right \} Zn={a[1n1]gcd(a,n)=1},其阶数为欧拉函数值 ϕ ( n ) \phi(n) ϕ(n)

任取元素 a ∈ Z n ∗ a\in\mathbb{Z}_{n}^{*} aZn,根据拉格朗日定理,则有 o r d ( a ) ∣ ϕ ( n ) ord(a)\mid \phi(n) ord(a)ϕ(n) ,即 ϕ ( n ) = k ∗ o r d ( a ) \phi(n)=k*ord(a) ϕ(n)=kord(a) k k k为正整数,则 a ϕ ( n ) {a}^{\phi(n)} aϕ(n) m o d mod mod n = a k ∗ o r d ( a ) n={a}^{k*ord(a)} n=akord(a) m o d mod mod n = 1 k m o d n={1}^{k} mod n=1kmod n = 1 n=1 n=1,故得到欧拉定理: a ϕ ( n ) ≡ 1 a^{\phi(n)}\equiv 1 aϕ(n)1 ( m o d mod mod n n n)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GOAT_0x02

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值