CINTA作业三

1、实现求乘法逆元的函数,给定a和m,求a模m的乘法逆元,无解时请给出无解提示,并且只返回正整数。进而给出求解同余方程(ax = b mod m)的函数,即给定a,b,m,输出满足方程的x,无解给出无解提示。

乘法逆元:

int a_mod_m(int a,int m)//gcd和egcd均为函数,可见作业二 
{
	if(gcd(a,m)!=1) return -1;//使用gcd函数判断两数是否互素,若互素则满足消去律,存在解 
	int *egcd=EGCD(a,m);//运用egcd函数算出乘法逆元,若r不是正整数则返回s 
	if(egcd[0]>0) return egcd[0];
	else return egcd[1]; 
 } 

同余方程

int ax_b_mod_m(int a,int b,int m)//gcd和egcd均为函数,可见作业二 
{
	if(gcd(a,m)!=1) return -1;//使用gcd函数判断两数是否互素,若互素则满足消去律,存在解 
	int *egcd=EGCD(a,m);//运用egcd函数算出乘法逆元,若r不是正整数则s 
	if(egcd[0]>0) return egcd[0]*b;
	else return egcd[1]*b; 
 } 

2、实现模指数运算的函数,给定x、y和m,求x的y次方模m。

int mod_exp(int x, int y, int m)
{
	if (y == 0) return 1;
	int z = mod_exp(x, y / 2, m);
	if ((y&1) == 0)return z * z % m;
	else return x * z * z % m;
}

3、设p = 23和a = 5,使用费尔马小定理计算a^{2020} mod p?
因为23是素数,由费马小定理得 5 22 ≡ 1 ( m o d 23 ) 5^{22}≡1( mod 23) 5221(mod23)又因为
5 2020 = 5 91 ∗ 22 + 18 5^{2020}=5^{91*22+18} 52020=59122+18
所以 5 2020 m o d 23 = 5 18 m o d 23 = 6 5^{2020} mod 23=5^{18} mod 23 =6 52020mod23=518mod23=6

4、使用欧拉定理计算2^{100000} mod 55。
因为55是合数,因此 ϕ ( 55 ) = ϕ ( 5 ) ∗ ϕ ( 11 ) = 40 ϕ (55)=ϕ (5)*ϕ (11)=40 ϕ(55)=ϕ(5)ϕ(11)=40
由欧拉定理可得 2 100000 ≡ 2 40 ≡ 1 ( m o d 55 ) 2^{100000}≡2^{40}≡1(mod55) 21000002401(mod55)
因此结果为1
5、手动计算7^{1000}的最后两个数位等于什么?
按规律可得为01

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值