CINTA作业六

1.设G是群,H是G的子群。任取g1,g2属于G,则g1H = g2H当且仅当 g 1 1 g1^{1} g11g2属于 H。
证明:
由g1H=g2H可知存在 h 1 , h 2 ∈ H h1,h2\in H h1,h2H,由消去律得 g 1 − 1 g 2 = h 1 h 2 − 1 g_1^{-1}g_2=h_1h_2^{-1} g11g2=h1h21,则 g 1 − 1 g 2 g_1^{-1}g_2 g11g2属于H.又由于 g 1 − 1 g 2 g_1^{-1}g_2 g11g2属于H,以及群的封闭性所以 g 1 − 1 , g 2 g_1^{-1},g_2 g11,g2属于H,由群公理可得 g − 1 g^{-1} g1的乘法逆元为g ∈ H \in H H,因此 g 1 H = g 2 H g_1H=g_2H g1H=g2H.

2.如果 G 是群, H 是群 G 的子群,且 [ G : H ] = 2 ,请证明对任意的 g ∈ G , g H = H g 。
证明:
g ∈ H , 有 g H = H = H g ; 当 g ∉ H , [ G : H ] = 2 , 存 在 H 1 = G − H ; 因 为 g ∉ H , g h ∉ H , g h ∈ H 1 , h g ∈ H , h g ∉ H , 所 以 g H = H 1 , H g = H 1 , g H = H g g\in H,有gH=H=Hg;当g\notin H,[G:H]=2,存在H_1=G-H;因为g\notin H,gh\notin H,gh\in H_1,hg\in H,hg\notin H,所以gH=H_1,Hg=H_1,gH=Hg gH,gH=H=Hgg/H,[G:H]=2,H1=GH;g/H,gh/H,ghH1,hgH,hg/H,gH=H1,Hg=H1,gH=Hg

3.如果群H是群G的真子群,即存在 g ∈ G g\in G gG但是 g ∉ H g\notin H g/H,请证明|H|<=|G|/2
证明:
因为群H为群G的真子集,群存在g属于G,但是g不属于H,故有g使得gH=H成立。[G:H]=|G|/|H|>=2,所以|H|<=|G|/2

4.设 G 是阶为 pq 的群,其中 p 和 q 是素数。请证明 G 的任意真子群是循环群。
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值