CINTA 作业四

1.证明命题6.6
证明:
由群公理得:对于 ∀ a ∈ G \forall a \in G aG, ∃ a − 1 \exist a^{-1} a1使 a a − 1 = a − 1 a = e aa^{-1}=a^{-1}a=e aa1=a1a=e,则对于 b a = c a ba=ca ba=ca,两边同时乘上 a − 1 a^{-1} a1,因此 b = c b=c b=c,同理 a − 1 a b = a − 1 a c a^{-1}ab=a^{-1}ac a1ab=a1ac, b = c b=c b=c

2.证明命题6.7
证明:
性质1. g m g n = g ∗ g ∗ g . . . g ( m − 1 次 群 运 算 ) ∗ g ∗ g . . . g ∗ g ( n − 1 次 群 运 算 ) = g ∗ g ∗ g . . . g ∗ g ( m + n − 1 次 群 运 算 ) = g m + n g^{m}g^{n}=g*g*g...g(m-1次群运算)*g*g...g*g(n-1次群运算)=g*g*g...g*g(m+n-1次群运算)=g^{m+n} gmgn=ggg...g(m1)gg...gg(n1=ggg...gg(m+n1=gm+n,由结合律显然上式成立。
性质2. ( g m ) n = g m ∗ g m ∗ . . . ∗ g m ( 共 n 个 ) = g m + m + . . . + m = g m n (g^{m})^{n}=g^{m}*g^{m}*...*g^{m}(共n个)=g^{m+m+...+m}=g^{mn} (gm)n=gmgm...gm(n=gm+m+...+m=gmn
性质3. ( g h ) − 1 = h − 1 g − 1 (gh)^{-1}=h^{-1}g^{-1} (gh)1=h1g1, ( g h ) n ∗ ( g h ) − n = e (gh)^{n}*(gh)^{-n}=e (gh)n(gh)n=e, ( g h ) n ∗ ( h − 1 g − 1 ) n = e (gh)^{n}*(h^{-1}g^{-1})^{n}=e (gh)n(h1g1)n=e,由消去律得 ( g h ) n = ( h − 1 g − 1 ) − n (gh)^{n}=(h^{-1}g^{-1})^{-n} (gh)n=(h1g1)n.
如果G是阿贝尔群, ( g h ) n = ( h g ) n = ( g − 1 h − 1 ) − n (gh)^{n}=(hg)^{n}=(g^{-1}h^{-1})^{-n} (gh)n=(hg)n=(g1h1)n;又因为 ( g − 1 h − 1 ) = g n h n (g^{-1}h^{-1})=g^{n}h^{n} (g1h1)=gnhn,所以 ( g h ) n = g n h n (gh)^{n}=g^{n}h^{n} (gh)n=gnhn

3.证明对任意偶数阶群G,都存在 g ∈ G g\in G gG, g ≠ e g\neq e g=e g 2 = e . g^{2}=e. g2=e.
证明:对 ∀ g ∈ G \forall g\in G gG,存在 g − 1 ∈ G g^{-1}\in G g1G,使得 g g − 1 = e , e e − 1 = e gg^{-1}=e,ee^{-1}=e gg1=e,ee1=e,若存在 g = g − 1 , 则 g 2 = g ∗ g = g ∗ g − 1 = e g=g^{-1},则g^{2}=g*g=g*g^{-1}=e g=g1,g2=gg=gg1=e.用反证法,假设不存在,则除了 e e e外还有奇数个元素,以元素-逆元两两配对的形式,此时还剩下一个元素,说明至少有一个元素g使得g= g − 1 g^{-1} g1,假设矛盾,不成立。

4.给出命题6.8的完整证明
证明:
因为G的非空子集H为G的子群, a , b ∈ H a,b\in H a,bH b − 1 ∈ H b^{-1}\in H b1H,根据封闭性,有 a b − 1 ∈ H ab^{-1}\in H ab1H,对任意 a , b ∈ H a,b\in H a,bH, a b − 1 ∈ H ab^{-1}\in H ab1H,则b可以为a,说明对任意a存在逆元 a − 1 a^{-1} a1;b=a时, a a − 1 = e ∈ H aa^{-1}=e\in H aa1=eH,存在单位元;对于 ∀ a , b ∈ H , 有 a b = a ( b − 1 ) − 1 ∈ H \forall a,b\in H,有ab=a(b^{-1})^{-1}\in H a,bH,ab=a(b1)1H.因此满足封闭性。任取 a , b , c ∈ H , ( a b ) c = a ( b c ) a,b,c\in H,(ab)c=a(bc) a,b,cH,(ab)c=a(bc).满足结合律。因此H满足群公理

5.设G是群,对任意 n ∈ N , i ∈ [ 0 , n ] , g i n\in N,i\in [0,n],g_i nN,i[0,n],gi属于 G , g 0 g 1 . . . g n G,g_0g_1...g_n G,g0g1...gn的逆元是 g n − 1 . . . g 1 − 1 g 0 − 1 g_n^{-1}...g_1^{-1}g_0^{-1} gn1...g11g01
证明:
( g 0 g 1 . . . g n ) ∗ ( g n − 1 . . . g 1 − 1 g 0 − 1 ) = ( g 0 ( g 1 . . . ( g n g n − 1 ) . . . g 1 − 1 ) g 0 − 1 ) = ( g 0 g 0 − 1 ) ( g 1 g 1 − 1 ) . . . ( g n g n − 1 ) = e (g_0g_1...g_n)*(g_n^{-1}...g_1^{-1}g_0^{-1})=(g_0(g_1...(g_ng_n^{-1})...g_1^{-1})g_0^{-1})=(g_0g_0^{-1})(g_1g_1^{-1})...(g_ng_n^{-1})=e (g0g1...gn)(gn1...g11g01)=(g0(g1...(gngn1)...g11)g01)=(g0g01)(g1g11)...(gngn1)=e,
因此, g 0 g 1 . . . g n g_0g_1...g_n g0g1...gnd的逆元为 g n − 1 . . . g 1 − 1 g 0 − 1 g_n^{-1}...g_1^{-1}g_0^{-1} gn1...g11g01

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值