Tushare调取上证50成分股--Python

一、Tushare介绍

Tushare官网链接:https://tushare.pro

Tushare是一个免费、开源的python财经数据接口包,免费提供各类金融数据和区块链数据,助力智能投资与创新型投资。提供了api 获取。Tushare拥有大量丰富的数据,包括行情数据,基本面数据等等。本文主要介绍jupyter下tushare调取基本数据的用法。

 二、安装

在anaconda prompt中输入

pip install tushare

即可

三、使用基本流程

①tushare官网注册账号获取自己的pro

注册账号并完善信息后可以获取200积分,满足基本数据调取需求,并且在个人页面可以获取到自己的接口,凭借此接口调取数据。

②导入tushare库

import tushare as ts
import pandas as pd
import numpy as np

pro = ts.pro_api("************************************")

③使用数据接口

例如,使用接口monthly获取600000.SH在2021全年12个月的‘股票代码’‘交易日期’‘收益率’

data = pro.monthly(ts_code=‘600000.SH’, start_date='20210101', end_date='20211231',fields='ts_code,trade_date,pct_chg')

四、获取上证50成分股收益率,输出一个dataframe

①根据数据接口index_weight获取上证50成分股股票代码

#获取上证50成分股的代码
S50 = pro.index_weight(index_code='000016.SH', trade_date='20211231')
SH50list = S50.con_code

②对stock在股票list中循环读取每只股票所需时间的收益率(涨跌幅)

SH50_data = pd.DataFrame()
for stock in SH50list:
    data = pro.monthly(ts_code=stock, start_date='20001129', end_date='20211231',fields='ts_code,trade_date,pct_chg')
    SH50_data=pd.concat([SH50_data,data])
SH50_data.head()

注意可以根据自己需要进行参数、交易日期的选择(可以通过tushare数据工具来进行查看)

 

总结:

在明白了tushare的基本调取方法后,可以根据自己需要来写循环调取自己所需要的数据,注意因为访问压力tushare会根据使用者积分限定调取权限和调取速度,如每分钟限制200次接口访问。如果电脑调取过快而超出权限可以使用延时代码,如下:

import time
time.sleep()

Tushare运行三年多以来,数据从广度和深度都得到了提升,Pro版正是在此基础上做了更大的改进。数据内容将扩大到包含股票、基金、期货、债券、外汇、行业大数据,同时包括了数字货币行情等区块链数据的全数据品类的金融大数据平台,为各类金融投资和研究人员提供适用的数据和工具。

未来很长一段时间,Tushare Pro版将加大数据采集和整理力度,不断更新不断提升,力求达到专业数据专业服务的能力。我们会与众多量化从业人员和金融相关研究人员一道,为提高金融数据的高可用性,提升投研效率,减少不必要的数据处理成本开销,贡献我们的力量。

当然,如果有能力建议大家可以进行捐助来获取积分,并为tushare社区做出有价值的贡献!

tushare是一个免费的金融数据接口网站,它提供了丰富的金融市场数据接口,方便用户进行数据下载和分析。调取日线数据并保存为txt格式的基本步骤如下: 1. 首先,你需要在tushare官网注册账号并获取一个token,因为tushare对免费用户有调用接口的频率限制,并且使用token可以确保数据调用的安全性。 2. 接下来,使用Python编写代码。首先需要安装tushare库,可以通过pip命令安装: ``` pip install tushare ``` 3. 使用安装好的tushare库,首先需要调用`init`方法初始化接口,传入你的token进行身份验证: ```python import tushare as ts ts.set_token('你的token') # 替换为你的tushare token pro = ts.pro_api() ``` 4. 使用`daily`接口调取日线数据。`daily`接口默认会返回当天的股票日线数据,如果需要历史数据,则需要指定开始和结束日期。参数`start_date`和`end_date`为调取数据的起始和结束日期,格式为'YYYYMMDD': ```python df = pro.daily(ts_code='000001.SZ', start_date='20200101', end_date='20200131') ``` 5. 将获取数据保存为txt文件。可以使用Pandas的`to_csv`方法将DataFrame保存为txt文件: ```python df.to_csv('股票代码_日期.txt', index=False, sep='\t') ``` 其中`index=False`表示保存时不包含DataFrame的索引,`sep='\t'`表示使用制表符作为列之间的分隔符,生成的文件为制表符分隔的txt文件。 6. 最后,你可以在相应的目录下找到保存好的txt文件。 请注意,上述代码仅为示例,你需要根据实际情况替换相应的股票代码和日期参数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值