1341:【例题】一笔画问题——欧拉(回)路

【题目描述】
如果一个图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。

根据一笔画的两个定理,如果寻找欧拉回路,对任意一个点执行深度优先遍历;找欧拉路,则对一个奇点执行dfs,时间复杂度为O(m+n),m为边数,n是点数。

【输入】
第一行n,m,有n个点,m条边,以下m行描述每条边连接的两点。

【输出】
欧拉路或欧拉回路,输出一条路径即可。

【输入样例】
5 5
1 2
2 3
3 4
4 5
5 1
【输出样例】
1 5 4 3 2 1

分析

  1. 首先我们要知道什么是欧拉回路,什么是欧拉路欧拉回路有0个奇点,欧拉路有2个奇点(两个定理)(起点是一个奇点,终点是另一个奇点);(欧拉回路和欧拉路,都要保证图是连通的)
  2. 所以我们要知道什么是奇点,奇点就是这个点的入度(出度)为奇数,那么就是奇点(奇点就是从这个点出发的线有奇数条,偶点就是从这个点出发的线有偶数条。)
  3. 所以用一个dis数组去记录每个节点的度数,然后找奇点start,如果有奇点(start!=1)的话,从奇点出发到可另一个奇点(欧拉路);无奇点的话,从第一个结点(start默认=1)出发(欧拉回路);
  4. 正如题上所说:找欧拉回路,对任意一个点执行深度优先遍历,找欧拉路,则对一个奇点执行dfs;
#include <bits/stdc++.h>

using namespace std;

const int N = 1000;
int a[N][N];//存图
int dis[N];//表示结点的度
int path[N];//记录路径
int n, m, cnt;

//欧拉路2个奇点,欧拉回路0个奇点

void dfs(int u) {
    //从当前点u分别向其他n个点发起搜索
    for (int i = 1; i <= n; ++i) {
        if (a[u][i]) {
            //一笔画,一路到底 不存在回溯
            a[u][i] = a[i][u] = 0;
            dfs(i);
        }
    }
    path[++cnt] = u;
}

int main() {
    cin.tie(0);
    cin >> n >> m;
    for (int i = 0; i < m; ++i) {
        int x, y;
        cin >> x >> y;
        a[x][y] = a[y][x] = 1;
        dis[x]++;
        dis[y]++;
    }

    int start = 1;
    for (int i = 1; i <= n; ++i) {
        //找奇点
        if (dis[i] % 2)
            start = i;
    }
    //有奇点(start!=1)的话,从奇点出发到可另一个奇点(欧拉路);
    //无奇点的话,从第一个结点(start默认=1)出发(欧拉回路);
    dfs(start);
    for (int i = 1; i <= cnt; ++i) {
        cout << path[i] << " ";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向上的yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值