给定一个 N 行 N 列的棋盘,已知某些格子禁止放置。
求最多能往棋盘上放多少块的长度为 2、宽度为 1 的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。
输入格式
第一行包含两个整数 N 和 t,其中 t 为禁止放置的格子的数量。
接下来 t 行每行包含两个整数 x 和 y,表示位于第 x 行第 y 列的格子禁止放置,行列数从 1 开始。
输出格式
输出一个整数,表示结果。
数据范围
1≤N≤100,
0≤t≤100
输入样例:
8 0
输出样例:
32
分析
- 将每个格子看成一个点,把相邻的两个格子看成一条边,然后要求,在选出的边没有公共点的条件下,最多能找到多少条边;那这不就是最大匹配问题,那就想到匈牙利算法,匈牙利算法的过程可以参考:P3386 【模板】二分图最大匹配——匈牙利算法;
- 要用匈牙利,我们要看当前这个图是否是二分图;这个格子问题是比较经典的二分图,可以把所有格子分为奇数格、偶数格,进行二染色,可以发现这个图是二分图;所以就可以直接用匈牙利算法,可以把奇数点(x+y的值)当成男生,偶数点当成女生,枚举男生然后dfs找对象即可(不要忘了每次枚举完男生后,重置vis标记);
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 110;
int n, t, ans;
PII match[N][N];//女生的男朋友
int g[N][N];
int dx[] = {-1, 0, 1, 0}, dy[] = {0, 1, 0, -1};
int vis[N][N];
bool dfs(int x, int y) {
for (int i = 0; i < 4; ++i) {
int xx = dx[i] + x;
int yy = dy[i] + y;
//出界、禁止放置、未搜过
if (xx < 1 || xx > n || yy < 1 || yy > n || g[xx][yy] || vis[xx][yy])
continue;
vis[xx][yy] = 1;
PII v = match[xx][yy]; // (x,y)正在追的女生
//所喜欢的女生没有男朋友 || 这个女生的男朋友可以换个新对象
if (v.first == 0 || dfs(v.first, v.second)) {
//恭喜(x,y)抢到了(xx,yy)这个女生
match[xx][yy] = {x, y};
return true;
}
}
return false;
}
int main() {
cin >> n >> t;
while (t--) {
int x, y;
cin >> x >> y;
//说明这个格子不让放
g[x][y] = 1;
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
memset(vis, 0, sizeof vis);
//从i+j为奇数点开始(奇点当做男生)
if ((i + j) % 2 && !g[i][j]) {
if (dfs(i, j))
ans++;
}
}
}
cout << ans;
return 0;
}