数据分析方法论之RFM模型详解

RFM

  • RFM模型是衡量客户价值和客户创利能力的重要工具和手段;帮助企业判断哪些用户有异动,是否有流失的预兆,从而增加相应的运营措施。
  • Recency:最近一次消费,统计用户最近一次消费时点和当前时点的时间差
  • Frequency:消费频次,指定时间区间内统计用户的购买次数
  • Money:消费金额,指定时间区间内统计用户的消费总金额。
  • 根据用户历史行为数据,结合业务理解,实现用户分类,助力用户的精准营销。
  • 在这里插入图片描述

实现步骤

  1. 获取R、F、M三个维度下的原始数据。
  2. 定义R、F、M的评估模型与分界值
  3. 进行数据处理,获取根据规则得到的R、F、M的值
  4. 参照评估模型 对用户进行分层
  5. 针对不同层级用户指定运营策略

用户分类模型RFM总结

  • 结合实际业务选取关键数据指标分析,不局限于 最近一次消费时间、消费频次、消费金额
  • 定义R值、F值、M值数据区间分割时,发现明显断档数据可以通过散点图、透视表、占比图等进行判断。
  • 对于划分阈值的计算,除了平均值,还有二八法则,对于更加复杂的业务,可以寻求程序员活业务员协助确定。
  • 除了选取讲解的3个核心业务指标进行交叉分析,也可以同时分析4个、5个指标,或者只需要分析2个指标。
  • 针对不同分层用户的运营策略的指定要结合实际,在制定了运营策略之后,结合公司现有资源和手段开展具体的落地工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值