【最优控制笔记】——2离散系统最优控制之不定终值

离散系统最优控制

说明:

在前述对终端状态确定情况的最优控制问题的基础上,进一步对终端状态不确定情况进行具体地讨论。

2.4 终端状态不确定——闭环控制

(2.4-1)思路:

类似的分析思路,我们还是根据Hamilton函数由式(2.2-5~8)可以得到状态、协状态和控制量的最初表达式:

在这里插入图片描述
在这里插入图片描述
但,对于终端状态不确定情况的 x N x_N xN d x N ≠ 0 dx_N\neq0 dxN=0,可以需要根据其边界条件:

在这里插入图片描述
得到:

在这里插入图片描述
又根据性能指标中的终端状态权重项 ϕ = 1 2 x N T S N x N \phi=\frac12x_{N}^{\mathrm{T}}S_{N}x_{N} ϕ=21xNTSNxN可得:
在这里插入图片描述

此处,不同于终端状态固定情况下状态和协状态解耦的形式,这里终端状态不固定时,状态和协状态耦合,很难求解。
但很容易看出,如果我们假设所有的 λ k \lambda_k λk都满足式(2.2-49)的形式,即:

在这里插入图片描述
便使问题求解容易。因此,只需要找到 λ k \lambda_k λk的一致表达形式即可。

(2.4-2)解决:

将式(2.2-50)代入状态 x k + 1 x_{k+1} xk+1的表达式(2.2-45)得:

在这里插入图片描述
将式(2.2-50)代入协状态 λ k \lambda_k λk的表达式(2.2-46)得:

在这里插入图片描述
由于 x k x_k xk往往非零,故两边可同除 x k x_k xk,再利用matrix inversion lemma 可得:

在这里插入图片描述
这说明 S k S_k Sk完全取决于系统的权重矩阵和 s k + 1 s_{k+1} sk+1,因此 λ k \lambda_{k} λk的形式满足,假设成立,可以基于此继续求解最优控制问题。

(2.4-3)最优控制问题求解:

上式(2.2-53)称为Riccati equation,如果 ∀ k , ∣ S k ∣ ≠ 0 \forall k,|S_k|\neq0 k,Sk=0,可以继续用matrix inversion lemma改写:

在这里插入图片描述
其代入式(2.2-51)可得状态轨迹 x k x_k xk的迭代关系式。

进一步,考虑控制量 u k u_k uk。由式(2.2-47)可得:

在这里插入图片描述
由于将 S k + 1 S_{k+1} Sk+1 x k + 1 x_{k+1} xk+1都带入数值求解太过于繁琐,因此,考虑将约束方程 x k + 1 = A k x k + B k u k x_{k+1}=A_kx_k+B_ku_k xk+1=Akxk+Bkuk代入,可得:

在这里插入图片描述
此处,控制量可以利用Kalman gain改写成:

在这里插入图片描述
因此,为了找到最优控制量,只需要求解Riccati equation找到 S k S_k Sk,算出Kalman Gain即可。

同时,很有趣的一点是,最优控制序列 u k u_k uk是状态 x k x_k xk的比例函数

(2.4-4)总结:

对于终端状态不确定的LQ问题,求解步骤总结如下:
在这里插入图片描述
对于the final-state weighting matrix S k S_k Sk的原始形式,可以采用Kalman Gain改写:

在这里插入图片描述
其等价于Joseph stabilized version of the Riccati equation:

在这里插入图片描述
其求解起来具有更优的数值求解性能。

(2.4-5)对该情况下性能指标的研究:

研究上述最优控制量作用下系统的性能指标:

在这里插入图片描述
利用下式改写 J i J_i Ji
在这里插入图片描述
在这里插入图片描述
再将 x k + 1 = A k x k + B k u k x_{k+1}=A_kx_k+B_ku_k xk+1=Akxk+Bkuk代入,等价于:

在这里插入图片描述
根据Riccatt Equation(2.2-53),其又可以写成:

在这里插入图片描述
可以整理成:

在这里插入图片描述
容易发现,当采用最优控制量 u k u_k uk控制时,性能指标为:

在这里插入图片描述
更一般地, ∀ k ∈ [ i , N ] \forall k \in [i,N] k[i,N],都能算出 [ k , N ] [k,N] [k,N]区间段的性能指标 J k J_k Jk

在这里插入图片描述
由此,称 S k S_k Sk为performance index kernel matrix。

(2.4-6)与前述内容的联系

说明:

为了直观地理解基于Riccati方程的控制律,回顾前述内容。

在静态优化部分例1.2-2,考虑二次型性能指标:

在这里插入图片描述
其线性约束设为:

在这里插入图片描述
写出Hamilton函数:

在这里插入图片描述
可以得出:

在这里插入图片描述
最优控制量:
在这里插入图片描述
通过最优控制量,可以得到最优状态和拉格朗日乘子:

在这里插入图片描述
利用the matrix inversion lemma,拉格朗日乘子可以改写成:
在这里插入图片描述

利用式(1.2-31):

在这里插入图片描述
可以得出the constrained curvature matrix :

在这里插入图片描述

回顾:

①由式(2.2-66)可得time-varying curvature matrix:

∂ 2 J i ∂ u k 2 = B k T S k + 1 B k + R k \frac{ \partial ^2 J_i}{\partial u_k^2 }=B_k^TS_{k+1}B_k+R_k uk22Ji=BkTSk+1Bk+Rk

易知,时变情况下的系统与静态系统的曲率矩阵具有类似的形式。

②由式(2.2-51)经the matrix inversion lemma 改写可得状态表达式:

在这里插入图片描述
其也与静态系统的最优状态(13)具有类似的形式。

③在终端固定条件的讨论零输入情况下( B k = 0 B_k=0 Bk=0),二次的Riccati Eqution也降阶成了线性的Lyapunov equation:

在这里插入图片描述

(2.4-7)示例:

P a g e 158 − P a g e 169 Page_{158}-Page_{169} Page158Page169,例子中的 S k S_k Sk差分方程难以求解,分别讨论了不同情况下的数值求解方法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值