【现代控制理论笔记】——第一章:线性定常系统的表示方法及运动分析

现代控制理论

第一章:

说明:

主要针对线性定常系统引入了两种描述,对其进行说明,进一步针对两种描述建立了相互转换关系。

然后,对系统进行了运动分析,分为连续系统和离散系统两类。运动分析涉及零输入、零状态及一般情况。

注意很多习题的核心在于 e A t = L − 1 [ ( s I − A ) − 1 ] e^{At}=L^{-1}[(sI-A)^{-1}] eAt=L1[(sIA)1]

1.1 线性定常系统的基本数学描述

① 黑箱:传递函数描述,只表明输入输出特性

②白箱:状态空间描述,还表明内部特性

1.2 传递函数描述

1)常见的拉普拉斯变换

2)传递函数严格真或者真(m≤n)时是物理可实现的。

单输入单输出系统

分母次数n>分子次数m为严格真;
分母次数n=分子次数m为真;

多输入多输出系统

lim ⁡ s → ∞ G ( s ) = \lim_{s\to\infty}G(s)= limsG(s)=零矩阵,为严格真;
lim ⁡ s → ∞ G ( s ) = \lim_{s\to\infty}G(s)= limsG(s)=非零常数矩阵,为真;

1.3 状态空间描述

1)系统阶数n意味着系统只会有n个线性无关的状态变量。

2) x = P x ˉ x=P\bar x x=Pxˉ的物理意义:

x x x x ˉ \bar x xˉ是系统两个状态变量,其内部元素线性无关,因此x可以表示为 x ˉ \bar x xˉ元素线性组合,P即为系数矩阵。

3)动态系统的状态空间描述:

在这里插入图片描述
机理

系统输入u引起系统状态x变化,系统状态x和输入u的变化引起系统输出的变化。

表现为

x ˙ = A x + B u y = C x + D u \dot x = Ax + Bu\\y=Cx+Du x˙=Ax+Buy=Cx+Du

1.4 由输入输出描述推演出状态空间描述

相当于一个实现问题:

对于系统:

y ( n ) + a n − 1 y ( n − 1 ) + ⋯ + a 1 y ( 1 ) + a 0 y = b m u ( m ) + b m − 1 u ( m − 1 ) + ⋯ + b 1 u ( 1 ) + b 0 u y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1y^{(1)}+a_0y\\=b_mu^{(m)}+b_{m-1}u^{(m-1)}+\cdots+b_1u^{(1)}+b_0u y(n)+an1y(n1)++a1y(1)+a0y=bmu(m)+bm1u(m1)++b1u(1)+b0u

传递函数:

g ( s ) = Y ( s ) U ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 g(s)=\frac{Y(s)}{U(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+\cdots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} g(s)=U(s)Y(s)=sn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0

1)当m<n时:

{ x ˙ = [ 0 1 ⋮ ⋱ 0 1 − a 0 − a 1 ⋯ − a n − 1 ] x + [ 0 ⋮ 0 1 ] u y = [ b 0 b 1 ⋯ b m 0 ⋯ 0 ] x \begin{cases}\dot{x}=\begin{bmatrix}0&1\\\vdots&&\ddots\\0&&&1\\-a_0&-a_1&\cdots&-a_{n-1}\end{bmatrix}x+\begin{bmatrix}0\\\vdots\\0\\1\end{bmatrix}u\\y=\begin{bmatrix}b_0&b_1&\cdots&b_m&0&\cdots&0\end{bmatrix}x&\end{cases} x˙= 00a01a11an1 x+ 001 uy=[b0b1bm00]x

2)当m=n时:

先计算 l i m s → ∞ G ( s ) = d lim_{s\to\infty}G(s)=d limsG(s)=d,然后对 g 1 ( s ) = g ( s ) − d g_1(s)=g(s)-d g1(s)=g(s)d则有m<n,用上述方法。

3)当m=0时:

{ x ˙ = [ 0 1 ⋮ ⋱ 0 1 − a 0 − a 1 ⋯ − a n − 1 ] x + [ 0 ⋮ 0 b 0 ] u y = [ 1 0 ⋯ 0 ] x \begin{cases}\dot{x}=\begin{bmatrix}0&1\\\vdots&&\ddots\\0&&&1\\-a_0&-a_1&\cdots&-a_{n-1}\end{bmatrix}x+\begin{bmatrix}0\\\vdots\\0\\b_0\end{bmatrix}u\\y=\begin{bmatrix}1&0&\cdots&0\end{bmatrix}x\end{cases} x˙= 00a01a11an1 x+ 00b0 uy=[100]x

1.5 由状态空间描述推导出传递函数矩阵

对于状态空间描述:

x ˙ = A x + B u y = C x + D u \dot x = Ax + Bu\\y=Cx+Du x˙=Ax+Buy=Cx+Du

系统传递函数可以写作:

G ( s ) = C ( s I − A ) − 1 B + D G(s)=C(sI-A)^{-1}B+D G(s)=C(sIA)1B+D

其中,

( s I − A ) − 1 = a d j ( s I − A ) d e t ( s I − A ) = a d j ( s I − A ) ∣ s I − A ∣ (sI-A)^{-1}=\frac{adj(sI-A)}{det(sI-A)}=\frac{adj(sI-A)}{|sI-A|} (sIA)1=det(sIA)adj(sIA)=sIAadj(sIA)

d e t ( s I − A ) = Π ( s − λ i ) det(sI-A)=\Pi(s-\lambda_i) det(sIA)=Π(sλi)特征多项式

1.6 线性定常系统的坐标变换

x ˉ = P x \bar x=Px xˉ=Px,则两系统可以相互转换:

x ˙ = A x + B u y = C x + D u \dot x = Ax + Bu\\y=Cx+Du x˙=Ax+Buy=Cx+Du

x ˉ ˙ = A ˉ x ˉ + B ˉ u y ˉ = C ˉ x ˉ + D ˉ u \dot {\bar x} = \bar A\bar x + \bar Bu\\\bar y=\bar C\bar x+\bar Du xˉ˙=Aˉxˉ+Bˉuyˉ=Cˉxˉ+Dˉu

其中,

A ˉ = P A P − 1 ,   B ˉ = P B ,   C ˉ = C P − 1 ,   D ˉ = D \bar{A}=PAP^{-1},~\bar{B}=PB,~\bar{C}=CP^{-1},~\bar{D}=D Aˉ=PAP1, Bˉ=PB, Cˉ=CP1, Dˉ=D

两系统若满足上式,则是代数等价的,其特征值、传递函数具有一致性。

1.7 线性定常连续系统的运动分析

对系统 x ˙ = A x + B u \dot x = Ax+Bu x˙=Ax+Bu,分类讨论:

1) 零输入 u ≡ 0 , x ( 0 ) = x 0 u\equiv0,x(0)=x_0 u0,x(0)=x0,则自治方程:

x ˙ = A x \dot x = Ax x˙=Ax的解为: x ( t ) = e A t x 0 x(t)=e^{At}x_0 x(t)=eAtx0

2)零状态 x ( 0 ) ≡ 0 x(0)\equiv0 x(0)0,则强迫方程:

x ˙ = A x + B u \dot x = Ax+Bu x˙=Ax+Bu的解为: ∫ 0 t e A ( t − τ ) u ( τ ) d τ \int_0^te^{A(t-\tau)}u(\tau)d\tau 0teA(tτ)u(τ)dτ

3)其他情形,系统特征方程的解:

x ( t ) = e A ( t − t 0 ) x 0 + ∫ t 0 t e A ( t − τ ) B u ( τ ) d τ x(t)=e^{A(t-t_0)}x_0+\int_{t_0}^te^{A(t-\tau)}Bu(\tau)d\tau x(t)=eA(tt0)x0+t0teA(tτ)Bu(τ)dτ

系统输出: y ( t ) = C x ( t ) + D u ( t ) y(t)=Cx(t)+Du(t) y(t)=Cx(t)+Du(t)

4)更特别的,若系统为: x ˙ = A x + B u + f \dot x=Ax+Bu+f x˙=Ax+Bu+f,则系统运动轨迹为:

x ( t ) = e A t x 0 + ∫ 0 t e A ( T − τ ) ( B u ( τ ) + f ) d τ x(t)=e^{At}x_0+\int_0^te^{A(T-\tau)}(Bu(\tau)+f)d\tau x(t)=eAtx0+0teA(Tτ)(Bu(τ)+f)dτ

1.8 线性定常系统的脉冲响应矩阵

对于系统:

x ˙ = A x + B u y = C x + D u \dot x=Ax+Bu\\y=Cx+Du x˙=Ax+Buy=Cx+Du

其脉冲相应矩阵(时间域)可写成:

G ( t ) = C e A t B + D δ ( t ) G(t)=Ce^{At}B+D\delta(t) G(t)=CeAtB+(t)

脉冲相应矩阵和传递函数矩阵之间的关系为:

L [ G ( t ) ] = G ( s ) L − 1 [ G ( s ) ] = G ( t ) L[G(t)]=G(s)\\ L^{-1}[G(s)]=G(t) L[G(t)]=G(s)L1[G(s)]=G(t)

因为 L ( e A t ) = ( s I − A ) − 1 L(e^{At})=(sI-A)^{-1} L(eAt)=(sIA)1

1.9 线性定常离散系统的运动分析

对于系统:

x ( k + 1 ) = G x ( k ) + H u ( k ) y(k) = C x ( k ) + D u ( k ) \begin{aligned} x(k+1)=& Gx(k)+Hu(k) \\ \text{y(k) =}& Cx(k)+Du(k) \end{aligned} x(k+1)=y(k) =Gx(k)+Hu(k)Cx(k)+Du(k)

其解与连续系统类似:

x ( k ) = G k x 0 + Σ i = 0 k − 1 G i H u ( k − i − 1 ) x(k)=G^kx_0+\Sigma_{i=0}^{k-1}G^iHu(k-i-1) x(k)=Gkx0+Σi=0k1GiHu(ki1)

对于离散系统而言,其传递函数矩阵写作:

G ( z ) = C ( z I − G ) − 1 H + D G(z)=C(zI-G)^{-1}H+D G(z)=C(zIG)1H+D

习惯称为脉冲传递函数矩阵。

1.10 连续系统的离散化

实际计算机应用时用采样器和保持器来对连续系统进行离散化。

对于一般的运动状态:

x ( t ) = e A ( t − t 0 ) x 0 + ∫ t 0 t e A ( t − τ ) B u ( τ ) d τ x(t)=e^{A(t-t_0)}x_0+\int_{t_0}^te^{A(t-\tau)}Bu(\tau)d\tau x(t)=eA(tt0)x0+t0teA(tτ)Bu(τ)dτ

有:

x [ ( k + 1 ) T ] = e A ( k + 1 ) T x 0 + ∫ 0 ( k + 1 ) T e A [ ( k + 1 ) T − τ ] B u ( τ ) d τ = e A T e A k T x 0 + ∫ 0 k T e A [ ( k + 1 ) T − τ ] B u ( τ ) d τ + ∫ k T ( k + 1 ) T e A [ ( k + 1 ) T − τ ] B u ( τ ) d τ = e A T ( e A k T x 0 + ∫ 0 k T e A ( k T − τ ) B u ( τ ) d τ ) ⏟ = x [ k T ] + ∫ 0 T e A t d t B u ( k ) \begin{aligned} x[(k+1)T]& =e^{A(k+1)T}x_0+\int_0^{(k+1)T}e^{A[(k+1)T-\tau]}Bu(\tau)d\tau \\ &=e^{AT}e^{AkT}x_0+\int_0^{kT}e^{A[(k+1)T-\tau]}Bu(\tau)d\tau \\ &+\int_{kT}^{(k+1)T}e^{A[(k+1)T-\tau]}Bu(\tau)d\tau \\ &=\underbrace{e^{AT}\left(e^{AkT}x_0+\int_0^{kT}e^{A(kT-\tau)}Bu(\tau)d\tau\right)}_{\color{red}{=}x[kT]}+\int_0^Te^{At}dtBu(k) \end{aligned} x[(k+1)T]=eA(k+1)Tx0+0(k+1)TeA[(k+1)Tτ]Bu(τ)dτ=eATeAkTx0+0kTeA[(k+1)Tτ]Bu(τ)dτ+kT(k+1)TeA[(k+1)Tτ]Bu(τ)dτ==x[kT] eAT(eAkTx0+0kTeA(kTτ)Bu(τ)dτ)+0TeAtdtBu(k)

(这里换元是怎么把 u ( τ ) u(\tau) u(τ)提出来变成 u ( k ) u(k) u(k)的?)

因此有连续系统和离散系统间的矩阵转换关系:

G = e A T , H = ∫ 0 T e A t d t B , C = C , D = D G=e^{AT},H=\int_0^Te^{At}dtB,C=C,D=D G=eAT,H=0TeAtdtBC=C,D=D

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值