【现代控制理论笔记】——第七章:稳定性

现代控制理论

第七章

1. 稳定性的概述

系统的稳定性分为基于输入输出描述的外部稳定性和基于状态空间描述的内部稳定性

1.1 外部稳定性(BIBO稳定):

任何一个有界输入 u ( t ) u(t) u(t),对应的输出 y ( t ) y(t) y(t)均有界。

∣ ∣ u ( t ) ∣ ∣ ≤ β < ∞ ||u(t)||\leq \beta<\infty ∣∣u(t)∣∣β<

BIBO稳定的充要条件:

真或严格真的传递函数矩阵 G ( s ) G(s) G(s)的所有极点均具有负实部。

对于负实部的判断,一般用劳斯判据

1.2 内部稳定(渐近稳定)

在这里插入图片描述

且有:

在这里插入图片描述

系统渐近稳定的特征值判据是:系统所有的特征值幅值均<1

在这里插入图片描述

2. Lyapunov稳定性分析

Lyapunov稳定性分析包括第一方法和第二方法:区别是是否对系统进行线性化。

1)Lyapunov第一方法:

基本思路是:

将非线性系统进行线性化,根据"线性化系统特征值在复平面上的分布",判断非线性系统在邻域内的稳定性。

基本结论有:

① 特征值均具有负实部,则非线性系统在邻域内稳定;

② 包含正实部特征值,则非线性系统在邻域内不稳定;

③ 除负实部特征值外包含零实部单特征值,则非线性系统在邻域内是否稳定需要通过高次项分析进行判断。

2)Lyapunov第二方法:
预备知识:

1)标量 V V V的定号性

① 对域中所有的非零向量x,都有 V ( x ) > 0 V(x)>0 V(x)>0,且在 V ( x = 0 ) = 0 V(x=0)=0 V(x=0)=0,则称正定。

② 对域中除原点和其他状态外的向量x有 V ( x ) = 0 V(x)=0 V(x)=0外,都有 V ( x ) > 0 V(x)>0 V(x)>0,称正半定。

③ 反之为负定、负半定。

2)自治系统

零输入系统,如: x ˙ = A x \dot x =Ax x˙=Ax

3)二次型函数的定号性准则:

在这里插入图片描述

基本思路是:

直接对非线性系统,引入具有广义能量属性的Lyapunov函数,分析Lyapunov函数导数的定号性,建立判断系统稳定性的结论。(Lyapunov定义了一个正定的标量函数,作为虚构的广义能量函数,用其一阶微分的符号特征来判断系统的稳定性)

主要的判断方法是:

① 如果一个系统被激励后,其储存的能量随时间的推移逐渐衰减,到达平衡状态时能量达最小值,则这个平衡状态是渐近稳定的;

② 如果系统不断地从外界吸收能量,储能越来越大,则这个平衡状态是不稳定的;

③ 如果系统的储能既不增加也不消耗,则这个平衡状态就是Lyapunov意义下的稳定

1)渐进稳定

大范围渐近稳定的判定定理:

在这里插入图片描述

在这里插入图片描述

小范围渐近稳定的判别定理

与大范围的不同在于最后一个判别条件: ∣ ∣ x ∣ ∣ → ∞ ||x||\to \infty ∣∣x∣∣时, V ( x ) → ∞ V(x)\to \infty V(x)

在这里插入图片描述

2)Lyapunov意义下稳定性的判别定理:

在这里插入图片描述
如果系统是时变的,还需要系统判定条件满足有界。

3)不稳定的判定定理:

在这里插入图片描述

4. LTI系统的稳定性判据:

考虑连续LTI系统,状态空间描述为:

x ˙ = A x \dot x=Ax x˙=Ax

→特征值判据:

在这里插入图片描述

在这里插入图片描述

→Lyapunov判据:

在这里插入图片描述

往往将Q设置为单位阵I。

5.例题

一、Lyapunov稳定性判据解阵P与Lyapunov函数

​ Lyapunov判据:

P A + A T P = − Q = − I PA+A^TP=-Q=-I PA+ATP=Q=I

​ 若解阵为: P = [ a m p m b q p q c ] P=\begin{bmatrix}a&m&p\\m&b&q\\p&q&c\end{bmatrix} P= ampmbqpqc ,且其是正定对称阵

​ 则Lyapunov函数可写成:
v ( x ) = a x 1 2 + b x 2 2 + c x 3 2 + 2 m x 1 x 2 + 2 p x 1 x 3 + 2 q x 2 x 3 = x T P x v ˙ ( x ) = x T Q x = 2 x T ( P T A + A P ) x v(x)=ax_1^2+bx_2^2+cx_3^2+2mx_1x_2+2px_1x_3+2qx_2x_3=x^TPx\\ \dot v(x)=x^TQx=2x^T(P^TA+AP)x v(x)=ax12+bx22+cx32+2mx1x2+2px1x3+2qx2x3=xTPxv˙(x)=xTQx=2xT(PTA+AP)x
​ **注意:**此处的 x ˙ \dot x x˙可以写成f(x)
d d t ( x T P x ) = x ˙ T P x + x T P x ˙ = x T A T P x + x T P A x \frac{d}{dt}(x^TPx)=\dot x^TPx+x^TP\dot x=x^TA^TPx+x^TPAx dtd(xTPx)=x˙TPx+xTPx˙=xTATPx+xTPAx

二、非线性系统线性化及稳定性分析

对系统:

[ x ˙ 1 x ˙ 2 ] = [ x 1 − x 2 − x 1 3 x 1 + x 2 − x 2 3 ] \begin{bmatrix}\dot x_1\\\dot x_2\end{bmatrix}=\begin{bmatrix}x_1-x_2-x_1^3\\x_1+x_2-x_2^3\end{bmatrix} [x˙1x˙2]=[x1x2x13x1+x2x23]

​非线性系统线性化后的状态矩阵:

A = ∂ f ∂ x i = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ − 1 − 3 x 1 2 − 1 1 1 − 3 x 2 2 ] A=\frac{\partial f}{\partial x_i}=\begin{bmatrix}\frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}\\\frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}\end{bmatrix}=\begin{bmatrix}-1-3x_1^2&-1\\1&1-3x_2^2\end{bmatrix} A=xif=[x1f1x1f2x2f1x2f2]=[13x121113x22]

​ 将平衡点 x e = ( 0 , 0 ) x_e=(0,0) xe=(0,0)代入可得:
A = [ − 1 − 1 1 − 1 ] A=\begin{bmatrix}-1&-1\\1&-1\end{bmatrix} A=[1111]
​ 特征方程 d e t ( s I − A ) = 0 det(sI-A)=0 det(sIA)=0的解均在右半平面,故系统不稳定。

三、设计Lyapunov函数

​ 对原系统:
[ x ˙ 1 x ˙ 2 ] = [ x 2 − a 1 x 1 − a 2 x 1 2 x 2 ] \begin{bmatrix}\dot x_1\\\dot x_2\end{bmatrix}=\begin{bmatrix}x_2\\-a_1x_1-a_2x_1^2x_2\end{bmatrix} [x˙1x˙2]=[x2a1x1a2x12x2]
​ 从 v ˙ ( x ) \dot v(x) v˙(x)开始,思想是找到满足 v ˙ ( x ) = m × x ˙ 1 + n × x ˙ 2 = . . . \dot v(x)=m\times\dot x_1+n\times\dot x_2=... v˙(x)=m×x˙1+n×x˙2=... 的可代入化简形式:
v ˙ ( x ) = a 1 x 1 x ˙ 1 + x 2 x ˙ 2 = d ( 1 2 a 1 x 1 2 ) d x 1 + d ( 1 2 x 2 2 ) d x 2 \dot v(x)=a_1x_1\dot x_1+x_2\dot x_2\\=\frac{d(\frac{1}{2}a_1x_1^2)}{dx_1}+\frac{d(\frac{1}{2}x_2^2)}{dx_2} v˙(x)=a1x1x˙1+x2x˙2=dx1d(21a1x12)+dx2d(21x22)
​ 则Lyapunov函数可以写作:
v ( x ) = 1 2 a 1 x 1 2 + 1 2 x 2 2 v(x)=\frac{1}{2}a_1x_1^2+\frac{1}{2}x_2^2 v(x)=21a1x12+21x22

四、系统平衡点求法

​ 如系统方程为:

x ˙ 1 = a x 2 x ˙ 2 = b x 1 + c x 2 2 \dot x_1=ax_2\\\dot x_2=bx_1+cx_2^2 x˙1=ax2x˙2=bx1+cx22

​ 平衡点可以定义为: f ( x ) = 0 f(x)=0 f(x)=0的点,有分类讨论的可能性(含sin的 2 n π 2n\pi 2 ( 2 n + 1 ) π (2n+1)\pi (2n+1)π

五、克拉索夫斯基法构造Lyapunov函数

选:

v ( x ) = f T ( x ) B f ( x ) = f T ( x ) I f ( x ) v(x)=f^T(x)Bf(x)=f^T(x)If(x) v(x)=fT(x)Bf(x)=fT(x)If(x)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值