【现代控制理论笔记】——第五章:能控、能观和传递函数

现代控制理论

第五章

说明:

对于最小实现问题,先判断系统是否是严格真的,如果不是则用D换成严格真的;如果是,则判断是不是可简约的,如果是则化成不可简约的,如果不是,则写出能控标准型实现即为最小实现

注意,其中可能涉及到能控/能观分解,原理是针对能控性/能观性矩阵,找到能控列/能观行部分作为T矩阵的前半部分,再找到不能控/不能观部分对应的与其线性无关的部分作为后半部分,然后能观用 T A T − 1 , T B , C T − 1 TAT^{-1},TB,CT^{-1} TAT1,TB,CT1,能控用 T − 1 A T , T − 1 B , C T T^{-1}AT,T^{-1}B,CT T1AT,T1B,CT得到分解后的矩阵

1. 不完全能控不完全能观系统的结构分解

在这里插入图片描述

2. 不完全能控不完全能观系统的传递函数

在这里插入图片描述

这从另一个角度说明了为什么系统的传递函数并不一定能完全展示系统的结构:

只有对完全能观能控的系统,传递函数才足以表征系统的结构描述才是完全的。

3. 能控能观系统的传递函数

对于系统:

x ˙ = A x + B u y = C x \dot x=Ax+Bu\\y=Cx x˙=Ax+Buy=Cx

其系统传递函数为:

G ( s ) = C ( s I − A ) − 1 B = C a d j ( s I − A ) d e t ( s I − A ) B G(s)=C(sI-A)^{-1}B=C\frac{adj(sI-A)}{det(sI-A)}B G(s)=C(sIA)1B=Cdet(sIA)adj(sIA)B

其也可以写作:

G ( s ) = C P ( s ) ϕ ( s ) B G(s)=C\frac{P(s)}{\phi(s)}B G(s)=Cϕ(s)P(s)B

的形式,其中 P ( s ) P(s) P(s)是矩阵多项式, ϕ ( s ) \phi(s) ϕ(s)是最小多项式。

说明:

① A的最小多项式是其特征多项式的因式,必满足 ϕ ( A ) = 0 \phi(A)=0 ϕ(A)=0

P ( s ) A = A P ( s ) P(s)A=AP(s) P(s)A=AP(s)

4. 能控能观系统的传递函数不可简约性

在这里插入图片描述

在这里插入图片描述

在复平面无根即P(s)B=0无解,反证法。

可以推出:

在这里插入图片描述

说明:

上式说明:若 ( A , B , C ) (A,B,C) (A,B,C)能控能观,则传递函数是不可简约的(既约的)。

也就是说,

在这里插入图片描述

但是若传递函数不可简约,并不一定系统就能控能观。

在这里插入图片描述

5. 最小实现

如果可以找到一个关系式:

x ˙ = A x + B u y = C x \dot x=Ax+Bu\\ y=Cx x˙=Ax+Buy=Cx

使 C ( s I − A ) − 1 B + D = G ( s ) C(sI-A)^{-1}B+D=G(s) C(sIA)1B+D=G(s)

则称其为传递函数矩阵 G ( s ) G(s) G(s)的一个实现。

那么给定传递函数是否一定可以找到实现呢?

① 对于严格真的传递函数矩阵:p为输入维数

在这里插入图片描述
在这里插入图片描述
与能控标准型和能观标准型类似。

② 对于真的传递函数矩阵:

可以先令 D = l i m s → ∞ G ( s ) D=lim_{s\to\infty}G(s) D=limsG(s),用 G ˉ ( s ) = G ( s ) − D \bar G(s)=G(s)-D Gˉ(s)=G(s)D求出 ( A , B , C ) (A,B,C) (A,B,C),则其实现为 ( A , B , C , D ) (A,B,C,D) (A,B,C,D)

其中,A的维数为实现的维数。 G ( s ) G(s) G(s)中维数最小的实现,称为最小实现。

在这里插入图片描述

这说明对于严格真的传递函数,能控/能观实现为系统的一个最小实现。

且有 G ( s ) G(s) G(s)的任意两个最小实现代数等价。

5.1 如何求最小实现
注意:

一定要把矩阵化简成首一式: s n s^n sn的系数为1!!!!

1)对于单输入单输出的系统,传递函数

G ( s ) = c n − 1 s n − 1 + ⋯ + c 1 s + c 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G(s)=\frac{c_{n-1}s^{n-1}+\cdots+c_1s+c_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} G(s)=sn+an1sn1++a1s+a0cn1sn1++c1s+c0

不可简约,其可控性实现和可观性实现即为最小实现。

A = [ 0 1 ⋱ ⋱ 0 1 − a 0 − a 1 ⋯ − a n − 1 ] A=\begin{bmatrix}0&1\\&\ddots&\ddots\\&&0&1\\-a_0&-a_1&\cdots&-a_{n-1}\end{bmatrix} A= 0a01a101an1

B = [ 0 ⋮ 0 0 1 ] B=\begin{bmatrix}0\\\vdots\\0\\0\\1\end{bmatrix} B= 0001

C = [ c 0 c 1 ⋯ c n − 1 ] C=\begin{bmatrix}c_0&c_1&\cdots&c_{n-1}\end{bmatrix} C=[c0c1cn1]

2)对单输入多输出的系统,传递函数:

G ( s ) = C n − 1 s n − 1 + ⋯ + C 1 s + C 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G(s)=\frac{C_{n-1}s^{n-1}+\cdots+C_1s+C_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} G(s)=sn+an1sn1++a1s+a0Cn1sn1++C1s+C0

不可简约,因此,其可控性实现/可观性实现即为最小实现。

A = [ 0 1 ⋱ ⋱ 0 1 − a 0 − a 1 ⋯ − a n − 1 ] A=\begin{bmatrix}0&1\\&\ddots&\ddots\\&&0&1\\-a_0&-a_1&\cdots&-a_{n-1}\end{bmatrix} A= 0a01a101an1

B = [ 0 ⋮ 0 1 ] B=\begin{bmatrix}0\\\vdots\\0\\1\end{bmatrix} B= 001

C = [ C 0 C 1 ⋯ C n − 1 ] C=\begin{bmatrix}C_0&C_1&\cdots&C_{n-1}\end{bmatrix} C=[C0C1Cn1]

3)给定 q × p q\times p q×p严格真的传递函数矩阵 G ( s ) G(s) G(s)有n个单的实数极点 s 1 , . . . s n s_1,...s_n s1,...sn,则传递函数矩阵可写为:

G ( s ) = P 1 s − s 1 + P 2 s − s 2 + ⋯ + P n s − s n , G(s)=\frac{P_1}{s-s_1}+\frac{P_2}{s-s_2}+\cdots+\frac{P_n}{s-s_n}, G(s)=ss1P1+ss2P2++ssnPn,

其中,P可以写成:

P i = lim ⁡ s → s i ( s − s i ) G ( s ) P_i=\lim_{s\to s_i}(s-s_i)G(s) Pi=limssi(ssi)G(s)

对P进行满秩分解,则有:

P i = C i B i P_i=C_iB_i Pi=CiBi

满足: r a n k B i = r a n k C i = r a n k P i rankB_i=rankC_i=rankP_i rankBi=rankCi=rankPi

则系统的最小实现为:

A = [ s 1 I r 1 s 2 I r 2 ⋱ s n I r n ] A=\begin{bmatrix}s_1I_{r_1}\\&s_2I_{r_2}\\&&\ddots\\&&&s_nI_{r_n}\end{bmatrix} A= s1Ir1s2Ir2snIrn

B = [ B 1 B 2 ⋮ B n ] B=\begin{bmatrix}B_1\\B_2\\\vdots\\B_n\end{bmatrix} B= B1B2Bn

C = [ C 1 C 2 ⋯ C n ] C=\begin{bmatrix}C_1&C_2&\cdots&C_n\end{bmatrix} C=[C1C2Cn]

4)对于更一般的情况,可以先写出能控性实现或能观性实现,再进行能控/能观分解,得到能控能观子系统,即为最小实现。

5.2 满秩分解

对于一个矩阵A:

A = [ 1 2 3 0 0 2 1 − 1 1 0 2 1 ] \left.A=\left[\begin{array}{rrrr}1&2&3&0\\0&2&1&-1\\1&0&2&1\end{array}\right.\right] A= 101220312011

其经过变换矩阵P进行初等行变换得到B:

[ A , I ] = [ 1 2 3 0 1 0 0 0 2 1 − 1 0 1 0 0 0 0 0 − 1 1 1 ] = [ B , P ] [A,I]=\left.\left[\begin{array}{rrrrrrr}1&2&3&0&1&0&0\\0&2&1&-1&0&1&0\\0&0&0&0&-1&1&1\end{array}\right.\right]=\begin{bmatrix}B,P\end{bmatrix} [A,I]= 100220310010101011001 =[B,P]

阶梯矩阵B可以写成:

B = [ D ; 0 ] = [ 1 2 3 0 0 2 1 − 1 0 0 0 0 ] B=[D;0]=\left.\left[\begin{matrix}1&2&3&0\\0&2&1&-1\\0&0&0&0\end{matrix}\right.\right] B=[D;0]= 100220310010

的形式,且 P − 1 P^{-1} P1可以写成分块的形式:

P − 1 = [ C , M ] = [ 1 0 0 0 1 0 1 − 1 1 ] P^{-1}=[C,M]=\left.\left[\begin{array}{rrr}1&0&0\\0&1&0\\1&-1&1\end{array}\right.\right] P1=[C,M]= 101011001

进而可以得到满秩分解:

A = [ C , M ] ⋅ [ D ; 0 ] = C ⋅ D A=[C,M]\cdot[D;0]=C\cdot D A=[C,M][D;0]=CD

6. Jordan标准型实现

6.1 由状态空间求Jordan标准型:

对于系统:

x ˙ = ( 0 1 0 0 0 1 2 3 0 ) x + ( 0 0 1 ) u y = ( 1 , 0 , 0 ) x \dot{\boldsymbol{x}}=\begin{pmatrix}0&1&0\\0&0&1\\2&3&0\end{pmatrix}\boldsymbol{x}+\begin{pmatrix}0\\0\\1\end{pmatrix}\boldsymbol{u}\\\boldsymbol{y}=(1,0,0)\boldsymbol{x} x˙= 002103010 x+ 001 uy=(1,0,0)x

其特征值为: λ = − 1 , − 1 , 2 \lambda=-1,-1,2 λ=1,1,2

求特征值对应的特征向量:

1)对于单根,由 A P i = λ i P i AP_i=\lambda_iP_i APi=λiPi

[ 0 1 0 0 0 1 2 3 0 ] [ p 11 p 21 p 31 ] = − [ p 11 p 21 p 31 ] \left.\left[\begin{array}{ccc}0&1&0\\0&0&1\\2&3&0\end{array}\right.\right]\left[\begin{array}{c}p_{11}\\p_{21}\\p_{31}\end{array}\right]=-\left[\begin{array}{c}p_{11}\\p_{21}\\p_{31}\end{array}\right] 002103010 p11p21p31 = p11p21p31

得:

P 1 = [ 1 − 1 1 ] P_1=\begin{bmatrix}1\\-1\\1\end{bmatrix} P1= 111

进一步可以得到变换矩阵:

T = [ p 1 p 2 p 3 ] T=\begin{bmatrix}p_1&p_2&p_3\end{bmatrix} T=[p1p2p3]

则Jordan标准形实现为:

A = [ − 1 1 0 0 − 1 0 0 0 2 ] A=\begin{bmatrix}-1&1&0\\0&-1&0\\0&0&2\end{bmatrix} A= 100110002

B = T − 1 B B=T^{-1}B B=T1B

C = C T C=CT C=CT

6.2 由传递函数求Jordan标准型

对于传递函数:

W ( s ) = 6 ( s + 1 ) s ( s + 2 ) ( s + 3 ) 2 W(s)=\frac{6(s+1)}{s(s+2)(s+3)^{2}} W(s)=s(s+2)(s+3)26(s+1)

使用留数法进行因式分解:

K 2 = − 10 3 = l i m s → − 3 1 ( 2 − 1 ) ! d d s 2 − 1 [ G ( s ) ( s + 3 ) 2 ] K_2=-\frac{10}{3}=lim_{s\to-3}\frac{1}{(2-1)!}\frac{d}{ds^{2-1}}[G(s)(s+3)^2] K2=310=lims3(21)!1ds21d[G(s)(s+3)2]

可得:

W ( S ) = − 4 ( S + 3 ) 2 + − 10 3 S + 3 + 3 S + 2 + 1 3 S W(S)=\frac{-4}{(S+3)^{2}}+\frac{-\frac{10}{3}}{S+3}+\frac{3}{S+2}+\frac{\frac{1}{3}}{S} W(S)=(S+3)24+S+3310+S+23+S31

则可以直接写出Jordan标准型:

A = [ − 3 1 0 0 0 − 3 0 0 0 0 − 2 0 0 0 0 0 ] A=\begin{bmatrix}{-3}&{1}&{0}&{0}\\{0}&{-3}&{0}&{0}\\{0}&{0}&{-2}&{0}\\{0}&{0}&{0}&{0}\\\end{bmatrix} A= 3000130000200000

B = [ 0 1 1 1 ] B=\begin{bmatrix}0\\1\\1\\1\end{bmatrix} B= 0111

C = [ − 4 − 10 3 3 1 3 ] C=\begin{bmatrix}-4&-\frac{10}{3}&3&\frac{1}{3}\end{bmatrix} C=[4310331]

6.3例题

对于系统:

G ( s ) = 3 s 2 + 17 s + 25 ( s + 2 ) 3 ( s + 3 ) \begin{aligned}G(s)&=\frac{3s^2+17s+25}{\left(s+2\right)^3\left(s+3\right)}\end{aligned} G(s)=(s+2)3(s+3)3s2+17s+25

其Jordan标准型实现为:

A = [ − 2 1 0 0 0 − 2 1 0 0 0 − 2 0 0 0 0 − 3 ] A=\begin{bmatrix}-2&1&0&0\\0&-2&1&0\\0&0&-2&0\\0&0&0&-3\end{bmatrix} A= 2000120001200003

B = [ 0 0 1 1 ] B=\begin{bmatrix}0\\0\\1\\1\end{bmatrix} B= 0011

C = [ 3 2 1 − 1 ] C=\begin{bmatrix}3&2&1&-1\end{bmatrix} C=[3211]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值