武汉大学(1985,1990-2022年30米分辨率)土地利用数据

该篇文章介绍了从国外期刊获取的中国1985年至2022年的详细土地利用数据,分辨率高达30米,包括农田、森林等9类分类。数据已上传至百度云,并提供了下载链接,需支付辛苦费获取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在国外期刊网站下载的中国1985、1990-2022年逐年的土地利用数据,分辨率为30米,土地分类体系为农田、森林、灌木、草地、水体、冰雪、荒地、建设用地、湿地共9类。数据已经在官网下载好并上传至百度云。收点辛苦费小偿下载链接:

http://generatelink.xam.ink/change/makeurl/changeurl/8277

### 如何在 Google Earth Engine (GEE) 中使用 CLCD 土地利用数据进行分类 CLCD 数据集是一种高分辨率土地利用/土地覆盖(Land Use/Land Cover, LULC)数据,其空间分辨率30 ,时间跨度从 1985 到 2023 [^4]。该数据集可以用于分析长时间序列内的土地变化情况以及支持各种地理信息系统应用。 以下是有关如何加载和处理 CLCD 数据的一些具体指导: #### 加载 CLCD 数据 可以通过 GEE 的内置函数 `ee.ImageCollection` 来访问 CLCD 数据集合。以下是一段 Python 脚本示例,展示如何加载指定份的数据并将其可视化: ```python import ee ee.Initialize() # 定义研究区域(以中国为例) roi = ee.Geometry.Rectangle([73.5, 18.1, 135.0, 53.6]) # 加载 CLCD 数据集 clcd_collection = ee.ImageCollection('projects/sat-io/open-datasets/CLCD') # 过滤特定份的数据 year_of_interest = '2020' filtered_clcd = clcd_collection.filter(ee.Filter.eq('MOSAIC_YEAR', year_of_interest)) # 获取第一个图像作为代表 clcd_image = filtered_clcd.first().select('b1').clip(roi) # 可视化参数设置 vis_params = { 'min': 1, 'max': 10, 'palette': ['ffbb22', 'ffff4c', 'ffffff', 'fafafa', 'a5d9af', '1a9850', '66bd63', 'f46d43', 'd73027', 'ababa8'] } # 打印元数据 print(clcd_image.getInfo()) # 显示地图 Map.addLayer(clcd_image, vis_params, f'CLCD {year_of_interest}') Map.centerObject(roi, zoom=5) ``` 上述脚本展示了如何通过过滤器获取某一的 CLCD 图像,并定义了一个简单的颜色方案来区分不同的类别。 #### 使用机器学习模型增强分类效果 如果需要进一步提高分类精度或者扩展至其他未标注地区,则可考虑引入监督式机器学习算法如随机森林(Random Forest)[^1]。这通常涉及以下几个方面的工作流程: - **样本采集**:手动标记训练样本地点; - **特征提取**:基于 Sentinel-2 或 Landsat 影像计算 NDVI、NDWI 等指数作为输入变量; - **建模预测**:运用 Random Forest 方法完成最终预测。 #### 注意事项 尽管 CLCD 提供了高质量的时间序列信息,但在实际操作过程中仍需注意一些潜在问题,比如不同时间段之间可能存在不一致现象;另外由于遥感技术本身的局限性,在某些复杂地形条件下也可能出现误判的情况。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值