《机器学习》第二章 模型评估与选择
1.经验误差与过拟合
错误率:分类错误的样本占样本总数的比例
精度:分类正确的样本占样本总数的比例
误差:学习器的实际预测输出与样本真实输出之间的差
训练误差(经验误差):学习器在训练集上的误差
泛化误差:学习器在新样本上的误差
过拟合:将训练样本的一些特点当作所有样本都具有的一般性质
原因:学习能力过于强大,无法解决,只能缓解
欠拟合:训练样本的一般性质都未学好
原因:学习能力差
解决:在决策树学习中扩展分支、在神经网络学习中增加训练轮数等
2.评估方法
留出法:将数据集划分成两个互斥的集合,分别为训练集、测试集,划分要尽可能保持数据分布的一致性(建议分层采样),通常将2/3到4/5的样本用于训练
交叉训练法:将数据集划分为k个大小相似的互斥子集,每次用k-1个子集的并集作为训练集,余下的一个子集作为测试集,进行k次训练,最后取k次训练的平均值作为结果,k的取值通常为10
留一法:将单个样本作为子集进行训练,是交叉训练法的一种特殊情况,评估结果比较准确,但不适用大样本数据
自助法:每次从样本中随机取一个样本,当取样的数量足够大时,约有36.8%的样本不能被取到,能取到的样本作为训练集,不能被取到的样本作为测试集。适用于数据集较小、难划分训练集的情况。
3.调参与最终模型
调参:对算法的参数进行设定
测试数据:学得模型在实际使用中遇到的数据
验证集:模型评估与选择中用于评估测试的训练集
4.性能度量
性能度量:衡量模型泛化能力的评价标准,常用的是均方误差
均方误差:求和(预测结果-真实标记)^2 / 样本数量
查准率:真正例/预测结果正
查全率:真正例/实际结果正
平衡点:查准率=查全率的点,用于比较学习器间的性能,值越大性能越好
ROC:受试者工作特征曲线
AUC:矩形线,对ROC曲线各部分面积求和
代价:样本预测错误时的损失程度,可以自己设定
5.偏差与方差
泛化误差=偏差+方差+噪声(学习算法的拟合能力、数据的充分性、学习任务的难度)
偏差:学习算法的期望预测与真实结果的偏差程度,刻画了学习算法本身的拟合能力
方差:同样大小的训练集的变动导致学习性能的变化,刻画了数据扰动造成的影响
噪声:当前任务上任何学习算法所能达到的期望泛化误差的下界,刻画了学习问题的难度