机器学习笔记(5)-LightGBM

LightGBM 是一个高性能的梯度提升框架,由 Microsoft 开发,旨在处理大规模数据集并提高训练效率。与 XGBoost 相比,LightGBM 采用了不同的策略来优化训练速度和内存使用,使其在处理大规模数据集时具有显著优势。

一、目标函数

与xgboost算法一样。

二、LightGBM 的关键特性

1. 基于梯度的单边采样--GoSS(Gradient-based One-Side Sampling)


   GoSS 是 LightGBM 中用于减少数据量的一种策略。它通过保留所有大梯度的样本和随机采样一部分小梯度的样本,来降低数据集的大小,同时保持模型的准确性。这种方法可以显著加快训练速度,同时减少计算资源的需求。

2. 互斥特征捆绑--EFB(Exclusive Feature Bundling)


   EFB 是一种特征组合技术,用于减少特征的数量,从而减少树的分裂次数。LightGBM 通过将互斥的特征捆绑在一起,即那些很少同时取非零值的特征,来实现这一目标。这可以减少树的深度和宽度,进而加速训练过程。

3. 直方图算法--Histogram-based Algorithm


   LightGBM 使用直方图算法来加速特征分割点的选择。通过预先计算特征的直方图,可以快速找到最佳分割点,而无需遍历所有可能的分割点,这大大提高了构建树的速度。

4. 叶导向的树增长策略--Leaf-wise Tree Growth Strategy


   与 XGBoost 的层次生长策略不同,LightGBM 采用 leaf-wise 的生长策略,即优先分裂能够带来最大损失函数下降的叶子节点。这有助于更快地找到最佳的树结构,但也可能导致过拟合,因此 LightGBM 提供了多种正则化方法来控制模型复杂度。

5. 多核并行学习--Parallel Learning


   LightGBM 支持多核并行学习,可以在构建单棵树的过程中并行处理不同的叶子节点,进一步提高训练速度。

6. GPU 加速--GPU Acceleration


   LightGBM 还支持 GPU 加速,可以利用 GPU 的并行计算能力进一步提高训练速度,尤其是在处理大规模数据集时。

7. 正则化--Regularization


   LightGBM 提供了多种正则化选项,如 L1 和 L2 正则化,以及对叶子权重的正则化,来控制模型复杂度,防止过拟合。

三、LightGBM 的使用

LightGBM 提供了 Python、R 和 C++ 接口,使得它可以在多种编程环境中使用。它还支持多种损失函数,如二分类、多分类、回归等,以及自定义损失函数和评估指标。

示例代码:

import lightgbm as lgb
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建LightGBM数据集
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test)

# 设置参数
params = {
    'objective': 'binary',       # 二分类问题
    'metric': 'binary_logloss',  # 评估指标为二分类的对数损失
    'num_leaves': 31,            # 叶子节点数
    'learning_rate': 0.05,
    'feature_fraction': 0.9,     # 随机特征采样比例
    'bagging_fraction': 0.8,     # 随机样本采样比例
    'bagging_freq': 5,           # bagging频率
    'verbose': -1                # 日志输出级别,-1表示不输出
}

# 训练模型
model = lgb.train(params, train_data, num_boost_round=100, valid_sets=test_data, early_stopping_rounds=10)

# 预测
y_pred = model.predict(X_test)
y_pred_class = np.round(y_pred)

# 评估
accuracy = accuracy_score(y_test, y_pred_class)
print("Accuracy:", accuracy)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值