LightGBM 是一个高性能的梯度提升框架,由 Microsoft 开发,旨在处理大规模数据集并提高训练效率。与 XGBoost 相比,LightGBM 采用了不同的策略来优化训练速度和内存使用,使其在处理大规模数据集时具有显著优势。
一、目标函数
与xgboost算法一样。
二、LightGBM 的关键特性
1. 基于梯度的单边采样--GoSS(Gradient-based One-Side Sampling)
GoSS 是 LightGBM 中用于减少数据量的一种策略。它通过保留所有大梯度的样本和随机采样一部分小梯度的样本,来降低数据集的大小,同时保持模型的准确性。这种方法可以显著加快训练速度,同时减少计算资源的需求。
2. 互斥特征捆绑--EFB(Exclusive Feature Bundling)
EFB 是一种特征组合技术,用于减少特征的数量,从而减少树的分裂次数。LightGBM 通过将互斥的特征捆绑在一起,即那些很少同时取非零值的特征,来实现这一目标。这可以减少树的深度和宽度,进而加速训练过程。
3. 直方图算法--Histogram-based Algorithm
LightGBM 使用直方图算法来加速特征分割点的选择。通过预先计算特征的直方图,可以快速找到最佳分割点,而无需遍历所有可能的分割点,这大大提高了构建树的速度。
4. 叶导向的树增长策略--Leaf-wise Tree Growth Strategy
与 XGBoost 的层次生长策略不同,LightGBM 采用 leaf-wise 的生长策略,即优先分裂能够带来最大损失函数下降的叶子节点。这有助于更快地找到最佳的树结构,但也可能导致过拟合,因此 LightGBM 提供了多种正则化方法来控制模型复杂度。
5. 多核并行学习--Parallel Learning
LightGBM 支持多核并行学习,可以在构建单棵树的过程中并行处理不同的叶子节点,进一步提高训练速度。
6. GPU 加速--GPU Acceleration
LightGBM 还支持 GPU 加速,可以利用 GPU 的并行计算能力进一步提高训练速度,尤其是在处理大规模数据集时。
7. 正则化--Regularization
LightGBM 提供了多种正则化选项,如 L1 和 L2 正则化,以及对叶子权重的正则化,来控制模型复杂度,防止过拟合。
三、LightGBM 的使用
LightGBM 提供了 Python、R 和 C++ 接口,使得它可以在多种编程环境中使用。它还支持多种损失函数,如二分类、多分类、回归等,以及自定义损失函数和评估指标。
示例代码:
import lightgbm as lgb
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建LightGBM数据集
train_data = lgb.Dataset(X_train, label=y_train)
test_data = lgb.Dataset(X_test, label=y_test)
# 设置参数
params = {
'objective': 'binary', # 二分类问题
'metric': 'binary_logloss', # 评估指标为二分类的对数损失
'num_leaves': 31, # 叶子节点数
'learning_rate': 0.05,
'feature_fraction': 0.9, # 随机特征采样比例
'bagging_fraction': 0.8, # 随机样本采样比例
'bagging_freq': 5, # bagging频率
'verbose': -1 # 日志输出级别,-1表示不输出
}
# 训练模型
model = lgb.train(params, train_data, num_boost_round=100, valid_sets=test_data, early_stopping_rounds=10)
# 预测
y_pred = model.predict(X_test)
y_pred_class = np.round(y_pred)
# 评估
accuracy = accuracy_score(y_test, y_pred_class)
print("Accuracy:", accuracy)