When can the market identify old news

When can the market identify old news? – 论文阅读

Abstract

  1. 是什么驱动了市场对旧闻反应的谜题?受关联忽视理论的启发,我们对金融专业人士进行了一项实验,结果显示即使是老练的投资者也难以识别出从多个来源重新组合而成的旧信息。
  2. 我们使用来自彭博终端的1700万篇新闻文章的独特数据集来评估这一机制的市场影响。旧信息的重新组合比直接重印引发更大的价格变动和随后的反转。这种效应在新闻情绪、模糊性和投资者关注方面持续存在。
  3. 此外,虽然对旧信息的整体反应会随着时间而减少,但对重新组合信息的差异反应却有所增加。

Introduction

Question

过去二十年间,信息传播机制的激增增加了新闻的数量和投资者可获取的信息源种类。鉴于庞大的新闻环境,市场参与者筛选新闻并识别新颖内容的任务并不简单,且容易受到有限注意力的影响。

大量关于有限注意力的文献显示,

  • 投资者常常对初始信息信号反应不足,导致当他们延迟看到这些信号或从其他来源接收信息时产生后续的漂移(Hirshleifer 和 Teoh, 2003;Peng 和 Xiong, 2006;Fedyk, 2022)。
  • 然而,在金融市场中也存在显著的过度反应实证证据,尤其是在回应旧闻时(Tetlock, 2011;Gilbert 等人, 2012)。

我们推测这也可以归因于(特定类型的)有限注意力:“关联忽视”,即决策者未能充分考虑到信号之间的相关性(DeMarzo 等人, 2003;Ortoleva 和 Snowberg, 2015)。在这种情况下,对非新颖信号的反应可能会过头,从而导致随后的反转。

Main Findings

  1. 本文通过提出市场未能识别旧闻的一个渠道,并通过实验和实证资产价格为这一机制提供证据,从而对金融市场的认知偏差文献做出了贡献。
    • 较高比例的重新组合新闻之后出现的更大价格响应更可能在未来一周内发生反转。具体来说,公司新闻中有额外10%为旧闻,预测会在接下来的一周内使整体每日回报额外反转13.9%;而旧闻中额外10%是重新组合而非重印,则会使反转再增加16.9%。这表明,平均而言,对重新组合新闻的过度反应倾向于在一星期内完全反转。
  2. 我们在几个方向上扩展了实证分析。
    • 首先,为了直接探索有限注意力的作用,我们根据投资者注意力分割样本。我们使用Ben-Rephael等人(2017)提供的彭博终端上的投资者注意力度量,该度量在证券-日期层面可用。与有限注意力一致的是,当投资者注意力高时,市场对旧闻的反应较小。但这是主要由更好地筛选出简单的重印驱动的,即使在高投资者注意力期间,重新组合效应仍然存在。
    • 其次,受实验中零售投资者对陈旧新闻更大的易感性的启发,我们检查了机构与零售订单失衡对旧闻和重新组合新闻的反应。我们提供了证据表明,零售交易(相对于机构交易)通常对旧闻有相对较大的反应,但对于重新组合新闻则较少。
    • 第三,我们探讨了新闻情绪和模糊性(硬量化信息与软主观信息)如何影响我们的结果。我们发现,对于正面和负面新闻,我们的实证结果非常相似,并且在控制硬量化信息量的情况下依然稳健。
    • 最后,我们利用大数据集的时间序列来调查记录的效果随时间的变化情况。我们分别对样本中的每个完整年份,从2001年到2014年进行了测试。系数的时间趋势表明,对于具有高水平(总体)旧闻的公司,异常每日回报逐渐变小。然而,对重新组合新闻的差异反应随着时间的推移而增加,公司新闻中额外10%为重新组合(而非重印)的系数从2001年的正5个基点效果增加到2014年的正24个基点效果。这些结果指向投资者在筛选简单重印方面的复杂性增加,但对重新组合之前可用信息的文章仍保持敏感。

我们的研究与越来越多的研究投资者在处理金融信息时的有限注意力对资产价格影响的文献相关联。特别地,受关联忽视理论(DeMarzo等人, 2003;Ortoleva 和 Snowberg, 2015)的启发,我们推测了一种特定类型的有限注意力,即市场参与者未能充分将来自多个来源的旧信息重新组合视为旧闻

  • 这建立在实验经济学的证据之上,表明人类主体在分析代表相同基础信号的不同组合的报告流时往往忽略关联性(Enke 和 Zimmermann, 2019),以及最近关于在可比定价中重复信息被过度权衡的证据(Murfin 和 Pratt, 2019)。

本文所记录的“重新组合效应”有助于解释几个先前研究强调的对旧闻的过度反应谜题。我们的文章揭示了可能导致对旧闻观察到的过度反应的那种注意力缺失,即未能识别之前可用信息的重新组合。

  • Huberman 和 Regev (2001) 提供了早期证据:1998年5月《纽约时报》头版的一篇文章,主要重复了五个月前的信息,却促使所报道公司的股价上涨了330%。
  • 。Tetlock (2011) 在对旧闻的系统调查中观察到,当更多关于公司的新闻是旧闻时,绝对异常回报通常较低,但仍发现了对旧闻的过度反应证据
  • Gilbert 等人 (2012) 的证据暗示了我们在本文中发展的机制:投资者对之前发布的输入数据重新组合成统计摘要形式的经济领先指标过度反应。

Experimental evidence

我们通过哈佛商学院校友网络招募了155名活跃的金融专业人士,参与了一项在2018年末和2019年初进行的在线实验。参与者涵盖了金融服务行业的全貌(其公司隶属关系列于互联网附录表A.1)。绝大多数参与者来自大型银行和经纪交易商(如高盛和摩根士丹利)、投资管理公司(如富达和道富银行)、私募股权公司(如贝恩资本和Lindsay Goldberg)、对冲基金(如Two Sigma和Point72)以及投资银行(如巴克莱和麦格理)。样本的剩余22%包括来自金融新闻机构(如《金融时报》)、保险公司(如Liberty Mutual)、政府机构(如联邦储备委员会)、咨询公司(如德勤)、私人投资者及大学或科技公司(如Facebook)的金融方向员工。样本中包括关键决策者,如合伙人和管理董事,也包括活跃的年轻员工,如投资组合经理和交易员。

每位参与者在实验中面对的是40个新闻标题流。这其中包括关于两个虚构公司之一的二十个标题,Argosy Logistics Inc. 和 Laker Pharmaceuticals LLC。每位参与者被独立随机分配到两个标题样本之一;在155名参与者中,76人被分配到Argosy新闻样本,79人被分配到Laker新闻样本。其余展示给参与者的二十个标题是关于其他公司的填充标题,旨在模拟市场参与者在消费真实世界新闻时可能面临的那种信息过载。

关于Argosy和Laker的个别标题代表了不同的信息内容。一些是新颖新闻,其中只有约20%的词汇出现在关于同一公司的先前标题中。其余的是旧闻,大约80%的词汇被关于同一公司的先前标题所覆盖。旧闻标题进一步分为两类:重印,其中大部分先前见过的内容来自于关于同一公司的单个先前标题;重新组合,则至少从两个之前的标题中抽取信息。

重要的是,实验环境允许我们在一个完全受控的环境中测试所提出的机制,我们设计了实验标题的措辞和排序,以确保标题除了它们的信息结构外,在任何维度上都不存在差异。两组实验标题(关于Argosy和Laker)特别设计为:

  1. 在三个组别(新消息、重印和重新组合)之间的平均长度相等;
  2. 重印和重新组合之间的平均顺序相等;
  3. 重印和重新组合之间的旧内容平均水平不可区分。

总体而言,在两个样本(Argosy和Laker)中,无论是重印还是重新组合,恰好有81.1%的词汇被关于同一公司的先前标题所覆盖。

在这里插入图片描述

例如,在实验的Argosy部分,参与者在实验开始时遇到了以下四个标题:

  1. “Argosy的设计业务不佳,需回答一些棘手问题”
  2. “Argosy Trucking第三季度业绩超出预期,每股收益1.2美元对比预期1.1美元”
  3. “Argosy超出预期:第三季度运输业务每股收益较1.1美元增加0.1美元”
  4. “Argosy第三季度盈利超出预期,但设计业务表现不佳”

标题3是标题2的直接重印,其中75%的文字已经出现在之前的内容中。标题4是一个重新组合:它也只包含了旧闻,82.5%的文字已在之前出现过,但它结合了标题1和2的内容。

例如,以下是关于虚构制药公司Laker的新颖标题示例:

  1. “Laker再次发生丑闻,CFO Russell正应对不当行为指控”
  2. “Laker股价暴跌,CEO George强硬驱逐Russell”
  3. “Laker的AdventiMed在DP2治疗方面取得重大里程碑(PharmaToday)”

以下是一个重印上述标题2信息的例子:

  • “Laker CEO George采取强硬手段驱逐Russell,消息人士称”

相比之下,下面这个标题是一个重新组合:

  • “Laker CFO因DP2发布期间的丑闻离职”

标题按图1所示的方式依次呈现给参与者。每个标题显示在屏幕中央,旁边有一个标签,指示标题涉及的具体公司(如丰田)或主题(如世界新闻)。通过将实验集中于虚构公司(Argosy和Laker)的新闻,我们确保没有受到实验设置之外消费的任何新闻的污染。参与者对新颖性的感知通过标题下方的新颖性评分尺度来收集。我们使用了两种评分尺度设置:一个是七点尺度,范围从“毫无新意”到“完全新颖”(如图1所示),另一个是类似的五点尺度。

在这里插入图片描述

为了模拟金融专业人士在现实世界新闻环境中可能面临的认知超载情况,比如在彭博终端滚动浏览新闻,我们在每个问题上设置了时间限制。每位参与者被分配了恰好10秒的时间来标记每个标题的新颖性。标题上方有一个计时器显示剩余时间。一旦10秒结束,实验自动进入下一个问题。如果参与者在此时间内未做任何标记,则会收到一个弹出通知,告知其错过了该问题;错过超过三个问题将导致资格取消。

参与者被激励尽可能准确地检测新颖性:回答最符合文章实际新颖性的五位参与者将获得50美元的奖金。整个调查耗时七分钟完成,所有参与者都获得了10美元的礼品卡作为对其参与的感谢。(正是因为这段话,我发现了这篇的作者是那个FP SI的作者Fedyk,因为之前那篇也是10美元的礼品卡。)

Results

表2中的结果显示,总体而言,参与者正确地识别出新文章比重新组合或重印包含更多新的信息,但参与者对信息重新组合的敏感度高于直接重印。如表2的面板1所示,平均来说,新文章在七点尺度上的新颖性评分为4.52,在五点尺度上为3.84。无论是重新组合还是重印都被认为包含明显少于其新颖对应物的新信息,但重新组合的一致评分高于重印。平均来说,重印的新颖性评分是7分中的2.61(5分中的2.40),而重新组合的评分为7分中的3.03(5分中的2.63)。

在这里插入图片描述

图2中的个体水平结果显示,与汇总分析的发现一致。我们分别计算了样本中每位金融专业人士对重新组合相对于重印的平均响应差异。图2的面板1展示了七点新颖性尺度调查设计下这些个体水平差异的分布,而面板2则呈现了五点尺度下的个体结果。中位数差异为七点(五点)尺度的0.40(0.20)分。68%的参与调查的金融专业人士的差异为正,意味着68%的参与者认为重新组合在平均上比重印更新颖。相比之下,只有19%的参与者对重印评价更高,而13%的参与者认为两组新闻同样新颖。

在这里插入图片描述

为进一步提供背景信息,在内部附录表A.5中,我们对通过在线调查平台Cint招募的776名零售投资者重复了使用五点尺度的实验;527名受访者完成了整个调查。总体而言,零售投资者比机构投资者更容易受到陈旧新闻的影响,这与其较低的专业水平以及Tetlock (2011)的证据相一致。零售投资者对新消息的新颖性评分平均为5分中的3.51分,略低于机构投资者的3.84分。然而,他们错误地将重印和重新组合都标记为相当新颖,分别为5分中的3.30分和3.36分(相比之下,机构投资者对这两者的评分分别为2.40分和2.63分)。这些结果突出了两个模式:

  1. 零售投资者比机构投资者更容易受到陈旧新闻的影响,甚至将简单的重印误认为是新的;
  2. 零售投资者对重新组合新闻的敏感度与对重印新闻的敏感度之间的差异仍然统计显著

在这里插入图片描述

Hypothsis

从概念上讲,市场参与者对旧闻(即之前可用信息的重新组合)的敏感性应导致市场对重新组合新闻产生更大的反应,随后这些反应会反转。基于我们的实验证据,我们正式提出了关于资产价格和交易量的实证预测。

  • 假设1:相较于新消息,旧闻与较低的交易量和新闻发布后立即出现的绝对价格变化相关联。
    • 实验结果表明,金融专业人士确实认为新信息平均来说比重印或重新组合的旧闻更新颖。这意味着旧闻文章在发布时应该引起较小的市场反应。
  • 假设2:在旧闻中,重新组合的文章与新闻发布后立即出现的更大交易量和绝对价格变化相关联,而这些都高于重印文章。
    • 关键在于重新组合机制,市场参与者认为具有相同长度、相对位置和实际旧内容量的重新组合标题比重印标题更具有新颖性。
  • 假设3:对旧闻的初始反应容易受到后续反转的影响。具体而言,在新闻发布后的几天或几周内:
    1. 旧闻之后的初始价格变动比新消息后的初始价格变动有更多的反转。
    2. 重新组合文章之后的初始价格变动比重印文章后的初始价格变动有更多的反转。

data

Source

最终样本覆盖了2000年1月至2014年12月期间彭博新闻数据发布的超过1700万篇新闻文章。主要来源于三个类别:

  1. 由彭博直接撰写和发布的新闻(约占样本的10%)
  2. 来自合作伙伴新闻机构的关键国家和国际新闻专线(60%的样本)
  3. 来自网络资源的内容,包括地区和地方新闻、博客和社交媒体(剩余的30%)

近年来,通过彭博终端的文章数量达到了每天约100万篇,比其他类似服务大数倍。

数据筛选条件,为了利用广泛的覆盖范围同时减少噪音,我们在用于分析的新闻上施加了几项条件:

  1. 证券代码标签:通过彭博终端的金融新闻文章被明确地标记了证券代码,无论是手动还是通过基于规则的算法。我们将样本限定为标记有对应于美国交易股票的证券代码的新闻文章,并排除价格低于5美元的股票以最小化微观结构效应。这大约留下了每天29,500篇新闻文章。
  2. 相关性筛选:我们专注于那些根据彭博的相关性标签特别相关的文章。大多数文章被标记了多个证券代码,之前的研究使用间接的相关性代理,例如将样本限制为标记有一个或两个证券的文章。彭博的明确相关性标记提供了一种更直接的方式筛选相关文章。对于每个文章-证券链接,彭博数据库包括一个相关性评分(通过手动或基于规则的算法分配)。我们的分析样本包括所有至少对一个美国交易的股权证券具有70%以上相关性的新闻文章。对于那些对多个证券被认为至少70%相关的文章,我们包括所有相关性达到70%或以上的证券标签。这将样本限制到每天大约4,000篇新闻文章,每篇文章平均链接到1.3个证券。
    1. 相关性评分为90%左右的文章高度聚焦于标记的证券,讨论该证券的收益、产品或策略;
    2. 70%左右的相关性评分表示文章与该证券的关系稍远但仍相关,例如可能讨论公司的主要竞争对手;
    3. 而50%左右的相关性评分则表示文章与所涉证券只有边缘关联。

Old news

对于样本中的每篇文章 s,我们首先提取文章文本中的唯一词(unigrams),排除停用词(如“a”,“the”,“in”,“when”等常见词汇),并使用Porter (1980)的标准词干算法将所有词转换为唯一术语(例如,“earned”和“earnings”都被表示为“earn-”)。我们使用范数 ∣ ∣ ⋅ ∣ ∣ ∣∣⋅∣∣ ∣∣∣∣ 来表示一组文章中唯一术语的数量。例如, ∣ ∣ s 1 ∩ s 2 ∣ ∣ ∣∣s_1\cap s_2∣∣ ∣∣s1s2∣∣ 表示同时出现在 s 1 s_1 s1 s 2 s_2 s2 中的唯一术语数量。

我们通过每篇新闻文章在多大程度上被先前的文章所覆盖来衡量其旧内容。对于每个标记有公司 i 的文章 s,我们查看同样标记有 i 并且在 s 发布前最多三天(72小时)内发布的所有文章 s’ 。我们识别出五个先前的(最接近的)文章 { s 1 ′ , … , s 5 ′ } \{s_1', \ldots, s_5'\} { s1,,s5},它们各自覆盖了 s 中最大的术语比例,并定义 s 包含旧信息的程度为:
O l d ( s ) = ∣ ∣ s ∩ ( ∪ i = 1 5 s i ′ ( s ) ) ∣ ∣ ∣ ∣ s ∣ ∣ , Old(s)=\frac{||s\cap(\cup_{i=1}^{5}s_{i}^{\prime}(s))||}{||s||}, Old(s)=∣∣s∣∣∣∣s(i=15si(s))∣∣,
这里 Old(s) 表示文章 s 中被先前五篇文章覆盖的唯一术语占总唯一术语的比例。

我们的旧内容度量方法与Tetlock (2011)引入的方法类似,但有一个关键创新点。我们不是将旧内容定义为新进文章 s 与最接近的先前关于同一家公司的文章的平均交集,而是考虑先前文章整体覆盖 s 的百分比。这意在区分以下情况:

  1. 文章 s, s’和 s’'在它们的开头段落中都涵盖了一些关于公司的背景信息(占其文本的50%),但除此之外讨论的是完全不同的事实;
  2. 文章 s 和 s’涵盖了完全相同的信息(100%的交集),而 s’'与 s 完全没有交集。

在这种情况下,如果使用平均交集指标,s 将被认为在这两种情况下都是同等陈旧(50%),即使在第一种情况下它包含了新的信息,而在第二种情况下则完全没有新的信息。基于整体覆盖术语百分比的指标避免了这个问题。

Reprints and recombinations

图4展示了分类的方法:

  • 每个面板显示了一篇新闻文章 s(以深灰色表示),以及 s 的内容在五个最接近的文章 { s 1 ′ , … , s 5 ′ } \{s_1', \ldots, s_5'\} { s1,,s5}中已经出现的部分(用实线或斜线填充的灰色标记)。
  • 底行显示了 ∪ i = 1 5 s i ( s ) \cup_{i=1}^5 s_i(s) i=15si(s),并同样用斜线填充灰色标记与 s 交集的内容。这最后一行捕捉了由公式(1)给出的旧信息度量:s 的内容已经在关于同一公司的五个最相似的先前文章中的至少一个中出现的比例。在这两个面板中,旧信息度量 Old(s) 均为90%,但这两个案例非常不同。

在这里插入图片描述

  • 图4的上部面板展示了一个重印案例:s 几乎是 s 1 ( s ) s_1(s) s1(s)的精确复制,用实线阴影强调这一点。
  • 相比之下,在下部面板中,没有单篇先前的文章能够覆盖超过一半的 s 的内容;相反,s 是 s 1 ( s ) s_1(s) s1(s) s 2 ( s ) s_2(s) s2(s)的重新组合(其与 s 的交集也用实线阴影突出显示)。

所以我们通过查看每篇文章s的内容被其单个最近邻 s 1 ′ ( s ) s_1'(s) s1(s)覆盖的程度来区分重印与重新组合:
C l o s e N e i g h b o r ( s ) = max ⁡ s ′ ∣ ∣ s ∩ s ′ ∣ ∣ ∣ ∣ s ∣ ∣ = ∣ ∣ s ∩ s 1 ′ ( s ) ∣ ∣ ∣ ∣ s ∣ ∣ CloseNeighbor(s) = \frac{\max_{s'}∣∣s\cap s'∣∣}{∣∣s∣∣} = \frac{||s\cap s_1'(s)||}{∣∣s∣∣} CloseNeighbor(s)=∣∣s∣∣max

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值