Artificial intelligence, firm growth, and product innovation

Artificial intelligence, firm growth, and product innovation – 论文阅读

Abstract

  1. 我们研究了人工智能技术的使用及其经济影响。本文提出了一种基于员工简历来衡量企业层面的人工智能投资的新方法。我们的衡量标准揭示了各行业在人工智能投资上的显著增长。
  2. 进行人工智能投资的企业在销售额、就业和市场估值方面经历了更高的增长率。这种增长主要通过增加的产品创新实现。(我们的结果在使用企业对大学人工智能毕业生供给的暴露程度作为工具变量时依然稳健。)
  3. 由人工智能驱动的增长集中在较大的企业中,并且与更高的行业集中度相关联。我们的研究结果强调,像人工智能这样的新技术可以通过产品创新促进增长并造就超级明星企业。

Introduction

过去十年见证了一种新的技术转变:人工智能(AI)技术的重大发展及其广泛的商业应用(Furman 和 Seamans, 2019)。作为一种预测技术,人工智能使企业能够从海量数据中更快、更好地学习,从而有可能显著改善商业决策。因此,人工智能可以作为通用目的技术,在广泛的行业中通过提高生产力和产品创新来创造增长(Aghion 等,2017;Agrawal 等,2019)。

Question

  • 然而,人工智能是否能转化经济并刺激经济增长仍然是一个开放的问题,因为过去十年总体生产力增长的乏力引发了对于人工智能的好处可能被夸大或需要更长时间才能实现的担忧(Mihet 和 Philippon, 2019;Brynjolfsson 等,2019)。
  • 迄今为止,缺乏关于企业层面采用人工智能的全面数据一直是理解人工智能技术采用模式及其经济影响的主要挑战(Seamans 和 Raj, 2018)。

Main Findings and contributions

  • Findings

    • 在本文中,我们基于企业的AI专业人力资本提出了一种衡量对人工智能技术投资的新方法。
    • 我们利用了独特的数据集组合,这些数据集既捕捉到了美国企业中AI技能员工的数量,也反映了对其的需求:Cognism Inc. 提供的简历数据涵盖了全球5.35亿个人的工作历史,以及来自Burning Glass的工作岗位数据,该数据记录了1.8亿个职位空缺。
    • 我们的主要结论是,更多投资于AI的企业通过增加的产品创新体验到更高的增长,这可以从增加的商标、产品专利和企业产品组合的更新中看出。
    • 我们的结果表明,到目前为止,人工智能的第一个直接影响是通过产品创新赋能增长,这与人工智能降低产品开发成本相一致。
  • Contributions

    • 我们的详细数据和衡量方法使我们能够研究人工智能技术对企业的影响,我们提供了新的证据表明人工智能投资与企业增长相关联,并探索了这种增长是如何累积的机制。
      • 而其他研究则侧重于人工智能对劳动力市场的影响(Acemoglu 等, 2022b)
      • 并且倾向于关注职业或总体水平(例如,Felten 等, 2019)。
    • 其次,我们能够测量跨多个行业的广泛样本中使用AI的企业,广泛的行业覆盖范围使我们能够考察人工智能投资对于如行业增长和集中度等总体趋势的影响。
      • 这补充了最近专注于发明AI技术企业的研究工作(Alderucci 等, 2020)
    • 第三,在没有美国企业-员工匹配的行政数据以及个体员工职业信息的情况下,我们的Cognism简历数据为美国的工作岗位提供了独特的覆盖,包括详细的职位描述,并代表了截至2018年超过64%的美国全职就业情况。这使我们能够比较从职位发布识别出的AI劳动力需求与从简历中识别出的AI工人存量。
    • 最后,我们关于企业人力资本的丰富数据使我们能够测量并控制混淆因素,例如非AI信息技术的使用,并捕捉外部AI解决方案和软件(如IPSoft Amelia)的使用情况。
  • 排除了哪些影响因素?

    • 首先,我们确认我们的AI衡量不会捕捉到一般的与数据相关的技能,而是仅限于那些具体与AI实施相关的技能。
    • 其次,我们手动检查了大量的被分类为AI的职位,确认我们的分类确实识别了高度AI技能的职位。
    • 第三,鉴于我们主要依靠所需技能来识别与AI相关的术语,我们通过确认具有最高AI关联性的职位发布明显偏向高度AI特定的职位名称来验证我们的衡量。
    • 第四,我们提供了几个企业在内部应用AI的具体案例的详细研究。
    • 第五,我们确认进行AI投资的企业也增加了研究与发展(R&D)支出,这与增加实验应用新AI技术相一致。
    • 最后,我们通过纳入外部AI解决方案和软件的使用来丰富我们的基础衡量,确认这个增强后的衡量产生了非常相似的结果。

How to conduct research

  1. 我们通过描述AI投资的关键模式开始了我们的分析。在员工简历和职位发布两个数据集中,AI职位的比例随时间显著增加,从2010年到2018年增长了七倍以上。AI职位的比例在科技行业中最高,但随着时间推移,各行业中AI投资的增长率是相似的。在企业层面,AI投资的增长在事前较大的企业和现金持有量较高的企业中更为显著。观察本地劳动力市场条件时,我们注意到高工资和教育程度更高的地区经历了更快的AI技能招聘增长。
  2. 接下来,我们探讨了一个根本性的问题:即人工智能投资是否与更高的企业增长相关联。如同在技术变革等缓慢进程的情境中(例如,Acemoglu 和 Restrepo, 2020),我们的主要规范是长期差异回归,它衡量了从2010年到2018年间企业成果的变化相对于企业层面AI技能人力资本变化的影响,通过AI工作者的比例来衡量。这种策略特别适用于我们的情境,因为人工智能投资是逐渐积累的,并且可能不会立即产生效果。我们在模型中加入了一组丰富的控制变量:行业固定效应以及截至2010年的企业、行业和通勤区级别的特征。我们记录了那些更多投资于AI的企业呈现出强烈且一致的增长模式:8年内基于简历的人工智能投资衡量标准增加一个标准差,对应着销售额增加了19.5%,就业人数增加了18.1%,市场估值增加了22.3%。这些结果普遍存在于主要行业部门(如制造业、金融业和零售业),支持了AI作为通用目的技术的观点。
  3. 虽然长期差异规范控制了时间不变的企业特性,但我们进行了几项测试以解决关于遗漏变量或因果倒置的担忧。首先,我们利用企业层面的面板数据,使用标准的分布式前导滞后模型(Aghion 等, 2020)动态地考察围绕AI投资的企业每年的增长情况。我们发现,在AI投资之前企业的增长没有预趋势,这证实了进行AI投资的企业并非处于不同的增长轨迹上,并且在两到三年后出现了增长,表明AI的效果不是即时的。其次,结果在控制过去的公司和行业增长以及未来增长机会(用Tobin’s q代理)的情况下仍然稳健。第三,我们确认我们的结果确实反映了对AI的投资,而不是其他技术:当控制同期企业在机器人、非AI信息技术和非AI数据分析方面的投资时,AI投资的效果保持不变。
  4. 为进一步解决未观察到的冲击同时驱动企业和AI投资的担忧,我们采用了一种新颖的工具变量(IV)策略:我们利用企业在AI人才供给上的先验暴露程度作为企业层面AI投资的工具变量,这些AI人才来自历史上在AI研究方面较强的大学。核心思想是,训练有素的AI劳动力的稀缺性是企业采用AI的一个最重要限制(例如,CorrelationOne, 2019),而历史上在AI研究方面强劲的大学近年来能够培训出更多的AI技能毕业生,使那些历史上从这些大学招聘的企业更容易招募到AI人才。为了构建这个工具变量,我们编制了两个新的数据集:(i) 每所大学在AI研究方面的先验实力,以及(ii) 2010年前的企业-大学雇佣网络,以衡量企业对强AI大学的暴露程度。与商业界对AI的兴趣自2012年起才广泛流行相一致,我们展示了企业在2010年与强AI大学的联系并不是由雇佣AI技能工人需求驱动的,并且与2010年前的企业增长无关。该工具变量具有强大的第一阶段效果,我们显示,工具变量化的公司层面AI投资增加在2010年至2018年间稳健预测了企业增长。我们验证了这些结果不是由强AI大学的其他特性(如一般计算机科学的实力或整体大学排名)驱动的。
  5. 接下来,我们探讨了AI如何促进企业增长的机制。我们提供了一个理论框架,在其中AI可以通过两种非互斥渠道带来企业增长:(i) 产品创新和(ii) 流程创新及运营成本降低。
    • 根据第一个渠道,AI可以降低产品创新的成本,从而改善现有产品的质量并允许企业创造新产品(Klette 和 Kortum, 2004a; Hottman 等, 2016)。理论上,AI可以通过几种方式潜在地降低产品创新的成本。首先,由于产品开发涉及长时间的实验且收益不确定(Braguinsky 等, 2021),AI算法快速从大型数据集中学习的能力可以减少产品开发过程中实验的不确定性,并使学习有前景项目的流程更高效。例如,在Moderna,AI算法被用于在短短65天内开发出首个COVID-19疫苗,这一过程以前需要数年时间。第二,AI算法本身可以构成改进的产品(例如,AI驱动的交易平台)。第三,AI可以通过提升企业了解客户需求并定制产品提供的能力,来贡献于产品范围的扩大(Mihet 和 Philippon, 2019)。实证上,我们发现,更大规模的AI投资使得企业在产品创新方面有所增加,表现在更多专注于产品创新的专利(参见Ganglmair 等, 2021)和商标(Hsu 等, 2021)。
    • 人工智能促进增长的第二个渠道是通过增加流程创新,这将降低运营成本并提高现有产品的生产力——例如,通过替代某些任务中的人工劳动(Agrawal 等, 2019;Acemoglu 和 Restrepo, 2019),或者通过更高效的流程和对生产过程输入要素更好的预测来提升运营效率(Basu 等, 2001;Farboodi 和 Veldkamp, 2021)。实证上,我们并未找到支持这一第二渠道的证据。AI投资与每位员工销售额、全要素生产率或流程专利(即专注于流程创新的专利)的变化无关。一些先前的技术显示了与基于任务的自动化模型一致的劳动力效应(例如,Acemoglu 和 Restrepo, 2018)。对于AI而言,对企业使用AI的详细案例研究表明了AI应用的广泛性,而从实证上看,劳动力替代效应并不是我们分析中的主要驱动因素。相反,AI投资与企业增长之间的关系似乎是由产品创新驱动的,这使得企业可以通过创造更多的产品来扩大规模。AI投资可以帮助克服产能限制,使企业能够部署更多资本来生产额外的产品,但这伴随着相应的成本增加。
  6. 我们的最后一组结果涉及AI对行业动态可能产生的总体影响。首先,我们估计了初始规模不同的企业群体中企业AI投资与企业增长之间的关系,发现AI投资与企业增长之间的正向关系在事前较大的企业中更为强烈,这与AI可以通过偏向拥有更多数据的大企业来增加不平等的理论相一致(Mihet 和 Philippon, 2019;Farboodi 等, 2019)。然后,我们测试了由AI驱动的企业层面的增长是否转化为行业层面的增长。尽管行业内竞争对手之间可能存在负面溢出效应,可能会抵消甚至主导对进行AI投资企业的正面效应,并且Basu 等 (2006) 显示如果技术使用下降,技术的应用在总体水平上可能是收缩性的。然而,我们发现在Compustat企业样本中,那些更多投资于AI的行业经历了整体销售和就业的增长。最后,AI投资与行业集中度的增加相关联,这与我们发现AI偏向于事前较大且拥有更多数据的企业相一致。这表明AI投资可以通过强化赢家通吃的动态来影响行业动态。

综上所述,我们记录了AI与更高企业增长之间的强关联,这种增长主要来源于企业使用AI技术进行产品创新。这一机制反映了AI作为预测技术的本质。

  • 预测对于企业在运营的所有方面(Farboodi 和 Veldkamp, 2022)的决策至关重要,特别是在产品开发过程中(Cockburn 等, 2018),这需要对有前景的项目和客户偏好进行实验和学习(Braguinsky 等, 2021)。

Literature Review

近期的研究在考察AI技术对企业活动的影响方面取得了进展,涵盖了各种具体情境:

  • 机器人顾问(D’Acunto 等, 2019)
  • 金融科技创新(Chen 等, 2019)
  • 贷款审批(Jansen 等, 2020; Fuster 等, 2020)
  • 金融分析师(Grennan 和 Michaely, 2019; Abis 和 Veldkamp, 2023; Cao 等, 2021)
  • 创业活动(Gofman 和 Jin, 2022)

AI技术对经济影响的相关研究

  • Acemoglu 等 (2022b) 使用Burning Glass职位发布数据研究了企业职业结构对AI技术的暴露程度对劳动力需求的影响。
  • AI作为一种通用目的技术如何刺激经济增长(Goldfarb 等, 2023)。
  • AI促进增长的机制是通过增强产品创新实现的,这被认为是增长的关键驱动力(例如,Hottman 等, 2016; Argente 等, 2021)。我们的结果指向了AI的主要用途是产品创新,这是技术采用文献中较少探索的机制。作为预测技术(Agrawal 等, 2019),AI通过使企业能够从大数据中更好地、更快地学习来创造新的商业机会。
  • Cockburn 等 (2018) 认为AI技术可以通过加快知识积累的速度来刺激创新。
  • Rock (2019) 表明Google的TensorFlow推出加速了企业因接触AI而获得的市场估值增长,但对生产力没有影响。
  • Hirvonen 等 (2022) 的最新工作显示芬兰制造业机器人的采用主要通过增加产品创新来促进企业增长。

衡量无形资产的相关研究

  • 美国国家层面上衡量无形资产的努力正在进行中(Corrado 等, 2016),大多数企业层面的无形资产衡量仍然依赖如研发和销售、一般及行政费用(SG&A)等成本项目(例如,Eisfeldt 和 Papanikolaou, 2013; Peters 和 Taylor, 2017; Crouzet 和 Eberly, 2019; Eisfeldt 等, 2020)。
  • Hoberg 和 Phillips (2016) 分析10-K文件的文本以创建企业的产品组合衡量
  • Kogan 等 (2019) 使用专利文本构建特定职业的技术变革指标
  • Fedyk 和 Hodson (2023) 利用文本分析衡量企业的技术技能焦点
  • Argente 等 (2020) 将专利文本映射到产品
  • Babina 等 (2023a) 使用专利文本衡量技术创新
  • Bloom 等 (2021) 通过专利、职位发布和财报电话会议的文本分析识别技术

最后,我们为有关行业集中度和超级明星企业的最近文献(例如,Gutiérrez 和 Philippon, 2017; Covarrubias 等, 2019; Grullon 等, 2019; Autor 等, 2020)做出了贡献。

  • 先前的文献记录了较大规模的企业采用了更多的IT和互联网技术并从中受益更多(Forman, 2005; Brynjolfsson 等, 2008, 2023; Bessen, 2020)。
  • 无形资产推动最大企业增长并促进行业集中的假设(例如,Crouzet 和 Eberly, 2019)
  • AI似乎降低了对于大型企业尤为高昂的产品开发成本(Akcigit 和 Kerr, 2018),使这些企业更容易扩大规模。
  • 最后,我们的证据也与Gutiérrez 和 Philippon (2019) 记录的超级明星企业中缺乏生产力增长的现象一致。

Artificial intelligence: background and mechanisms

过去十年间,商业应用和对AI的投资呈指数级增长。尽管没有关于企业AI投资的系统性数据,最近的估计显示全球每年约有1400亿美元投入到AI中。AI投资也在各行业部门中扩展。虽然科技行业是AI的早期采用者,但高管调查表明所有行业的企业都广泛采用了AI技术(例如麦肯锡的一项调查)。

  • 自John McCarthy在1955年创造这个术语以来,AI领域的学术研究已经蓬勃发展了数十年。
  • 私营部门近年来对AI商业兴趣的爆发式增长是由供给侧因素驱动的:数据的快速积累、计算成本的下降以及方法论的进步,包括深度学习(Hodson, 2016)。
  • 就商业应用而言,三个主要领域——机器学习、自然语言处理和计算机视觉——占据了私营部门投资的大部分。
  • 这些核心技术的特点在于它们能够执行高技能的非例行任务,如预测、检测和分类(Agrawal 等, 2019)。
  • 它们与传统数据分析方法的主要区别在于这些技术能够从大量的高维数据(包括文本、语音和图像数据;Hauptmann 等, 2015)中学习,并显著提高预测的准确性。

AI具有几个关键的经济特性:

  1. 预测技术:AI是一种预测技术,而预测是不确定条件下决策的核心——这是所有运营方面的企业都会遇到的问题。因此,利用AI进行更好的预测的能力可以创造出新的商业机会。
  2. 通用目的技术(general purpose technology, GPT):经济学家认为AI是一种通用目的技术,可以在不同的业务细分市场和行业中被利用来解决广泛的问题。GPT的例子包括蒸汽机、电力和互联网。
  3. 围绕人力资本的投资:AI投资集中在人力专长上,辅之以计算技术和数据基础设施的投资。这不同于工业机器人等主要需要资本投资的技术(Benmelech 和 Zator, 2022)。因此,AI是一种无形资产,反映了向无形资本更广泛的转变(Mihet 和 Philippon, 2019)。
  4. 信息商品与非竞争性使用:AI技术是信息商品,具有非竞争性的用途:新算法通常公开发布,可以同时被许多企业使用。然而,AI能给企业带来的好处程度取决于谁拥有大数据——AI技术的关键输入(Fedyk, 2016; Jones 和 Tonetti, 2020)。

Artificial intelligence and firm growth: mechanisms

这两种机制具有不同的实证预测。产品创新预测会带来新产品、产品质量的改进和产品组合的扩展,而流程创新则不会影响企业的产品组合。就生产力而言,流程创新会带来较低的运营成本和更高的生产力,但产品创新对生产力的影响则是模糊的。关于之前通用目的技术的研究大多发现对生产力有正面影响(例如Fizsbein 等, 2020; Acemoglu 等, 2020),有些也显示了对产品创新的正面效应(例如Bartel 等, 2007)。

AI作为产品创新的驱动力

  1. AI可以通过降低产品创新的成本来促进企业增长。产品创新和产品种类的扩展是企业增长的重要机制(Klette 和 Kortum, 2004a; Hottman 等, 2016)。产品创新可以增加现有产品的吸引力和需求,或使企业能够扩大其产品线。
  2. Braguinsky 等 (2021) 指出,产品种类和产品吸引力是通过企业的实验内生决定的,而AI有可能通过实验加速知识积累并减少产品创新成本(Bustamante 等, 2020)。根据高管调查,增强现有产品和服务以及创建新产品是迄今为止AI的主要用途之一(例如德勤的一项调查)。

作为预测技术,AI可能通过几种方式影响产品创新:

  1. 快速分析大数据:AI算法能够快速分析大型数据集并从数据中学习底层关系的能力,可以减少实验的不确定性,使学习过程更加高效,从而导致更多的实验和新产品的创造(Cockburn 等, 2018)。实践中,近年来出现了多种AI加速产品创新过程的方式。例如,AI可以缩短药物开发周期。Moderna利用AI算法,在仅仅65天内就完成了第一剂COVID-19疫苗的开发和生产,这一过程以前需要数年时间。
  2. 提升现有产品和服务的质量:AI算法可以通过直接将AI模型构建到产品中来帮助改进现有产品和服务的质量。例如,在在线附录A2中,我们提供了AI应用的详细案例研究,包括如摩根大通的AI驱动交易平台DeepX(允许更快更便宜地执行交易)和Caterpillar“智能”机械(提高机器安全性和灵活性)的例子。
  3. 改善产品吸引力:AI还可以帮助企业更有效地了解顾客偏好,因此更好地定制产品和服务以满足顾客的口味和需求。当企业推出新产品或扩展其产品种类时,他们面临顾客想要什么以及顾客偏好可能如何变化的不确定性。使用AI分析顾客数据可以潜在地帮助企业克服这个障碍,提供“超级个性化基础上的正确产品”(Hodson, 2016),并克服企业在需求累积过程中遇到的摩擦(Foster 等, 2016; Argente 等, 2021)。例如,有关个人行为的数据,如网页浏览、位置历史和其他数字足迹,可以比纯人口统计信息更好地近似进入个体需求函数的参数,从而为不同口味的顾客量身定制更多样化的产品(Mihet 和 Philippon, 2019)。

AI作为流程创新和降低运营成本的驱动力

AI还可能通过降低流程创新的成本来促进企业增长。流程创新提高了企业在生产现有产品方面的生产力,许多先前的技术创新都旨在降低运营成本和提高生产力(例如Basu 等, 2001;Cardona 等, 2013;Acemoglu 等, 2020)。

理论上,AI技术可以通过至少两种方式刺激流程创新和生产力改进。

  1. 首先,AI有可能替代某些任务中的人工劳动(Agrawal 等, 2019),削减每单位的劳动力成本。具体来说,AI辅助决策过程和解决复杂认知问题的能力已经引发了对于AI可能扰乱高技能和高薪职业的担忧,这与之前的科技采纳浪潮形成对比(Webb, 2020)。
  2. 其次,AI可以通过更好的预测来提高运营和生产的效率(Mihet 和 Philippon, 2019)。Tanaka 等 (2020) 提出了一个在不确定性和成本调整的情况下企业的输入选择模型,其中预测错误会导致投资不足或过度投资。AI可以潜在地帮助企业减少预测错误,并优化企业的输入决策。

Data

在关于AI经济影响的文献中,一个核心挑战是缺乏企业层面的AI投资数据。我们通过利用丰富的企业员工个人资料和职位发布数据集克服了这一挑战,这些数据同时衡量了企业的AI工人存量和对AI工人的需求。接下来我们将详细描述每个数据集并说明样本构建过程。

来自Cognism的就业档案

我们使用员工简历来衡量每个企业的实际AI工人存量。

  • 我们利用了一个由Cognism提供的大约5.35亿个个体档案组成的新型数据集,Cognism是一家为潜在客户生成和客户关系管理服务聚合就业档案的公司。Cognism从多种来源获取简历,包括公开的在线档案、与招聘机构的合作、第三方简历聚合器、合作伙伴组织的人力资源数据库以及用户直接贡献的数据。这些数据在Fedyk 和 Hodson (2023) 中被引入并详细描述。
  • 尽管这些数据略微过度代表了高技能员工,但它们覆盖了截至2018年美国全部劳动力的大约64%,并在各行业中提供了代表性分解。
  • 对于个人列出的每条就业记录,我们可以看到开始和结束日期、职位名称、公司名称和工作描述。个人还可能列出他们的专利、奖项和出版物。Cognism的AI研究部门利用机器学习和自然语言处理技术,包括命名实体消歧和基于图的建模方法,进一步丰富简历数据,通过规范化职位名称和职业,将员工与每个企业内的职能分部和团队关联起来,并从教育记录中识别机构、学位和专业。

我们将Cognism数据中的雇主名称与Compustat数据中的公司名称进行匹配。

  • 个人简历与企业实体的匹配是动态进行的,以考虑收购和剥离的情况。在2007年至2018年间基于美国的6.57亿个人-企业-年就业记录中,有1.2亿(占18%)与美国上市公司(而非私营企业或非商业部门)相匹配。这与大约26%的美国整体就业由上市企业所占的比例一致(Davis 等, 2006)
  • 与美国上市公司相匹配的1.2亿个人-企业-年的样本由1900万不同的个体雇员组成。

来自Burning Glass的职位发布

我们使用的第二个数据集涵盖了2007年及2010年至2018年间美国超过1.8亿个职位发布。

  • 该数据集由Burning Glass Technologies(简称BG)提供,来源非常丰富。BG检查了超过4万个在线职位板和公司网站,汇总职位发布数据,并将它们解析成系统化、机器可读的形式,进而创建劳动力市场分析产品。该公司使用复杂的去重算法以避免在多个职位板上发布的空缺职位被重复计算。BG数据为每个职位发布提供了详细信息,包括职位名称、工作地点、职业类别和雇主名称。
  • 重要的是,职位发布被标记了从每个职位开放文本中标准化的数千种特定技能。BG数据集的主要优势在于其覆盖面广和个体职位发布的细节丰富。该数据集几乎捕捉到了所有在线发布的职位,涵盖了大约60-70%在美国发布的所有职位,无论是在线还是离线。
  • Hershbein 和 Kahn (2018) 提供了BG数据的详细描述,并展示了其在职业层面上的代表性随时间保持稳定。

Burning Glass的职位发布数据在两个方面补充了我们的主要Cognism简历数据集。

  • 首先,我们利用职位发布数据中的详细技能分类法来实证识别高度与AI相关的技能
  • 其次,Burning Glass职位发布数据对学术界广泛可用;通过将它们与Cognism简历数据进行验证,我们表明,在没有匹配的雇主-员工数据的情况下,职位发布可以作为企业技术投资的有效代理。

我们专注于那些雇主名称非缺失且至少要求一项技能的工作。

  • 大约65%的职位发布包含雇主信息,93%的职位发布要求至少一项技能。我们还排除了实习职位。
  • 然后我们将剩余职位发布的雇主企业与Compustat企业进行匹配。这一步骤是为了将职位发布聚合到企业层面并与其它企业层面变量合并所必需的。
  • 对于无法完全匹配的企业名称观察值,我们通过查看企业名称、行业和位置手动评估前十名潜在的模糊匹配。在1.12亿个雇主名称和技能非缺失的职位发布中,有4200万(占38%)与Compustat企业相匹配。这稍微过度代表了上市企业的员工,这类企业在非农商业部门中仅占美国就业的四分之一以上(Davis 等, 2006)。

其他数据来源

我们从人口普查局的美国社区调查(ACS)收集通勤区级别的工资和教育数据,从人口普查季度劳动力指标(QWI)收集行业级别的工资和就业数据,以及来自开放学术图谱的学术出版物(详见附录A)。企业层面的操作变量(例如销售额、就业人数、市值)来自Compustat。

Results

为了构建基于人力资本的企业层面AI投资衡量标准,我们首先利用职位发布数据中的详细技能信息来识别最相关的AI技能;然后聚焦于实证上与AI最相关的技能,并在简历数据中进行识别。最后,通过计算每个企业员工中具有AI技能的员工比例,我们将工人层面的数据聚合到企业层面。

AI investments from job postings (Burning Glass)

我们充分利用职位发布数据中对所需技能的详细信息,提出了一种新的数据驱动方法来识别AI相关技能。

  • 其他工作依赖于预先设定的关键术语列表,这可能会由于关键词列表的任意性而遭受第一类错误(将边缘相关的员工错误地标记为AI相关)和第二类错误(遗漏了未进入初始词典的真实AI技能)。
  • 我们的方法通过直接从职位发布数据中学习大约15,000个独特技能的AI相关性来规避这些挑战,依据是它们与无歧义的核心AI技能的经验共现(即在不同职位发布所需的技能列表中共现)。
  • 然后我们将技能层面的度量聚合到职位层面,生成一个连续的AI相关性度量,从而可以将职位分类为AI技能型和非AI技能型。

为了衡量每个技能的AI相关性,我们计算了该技能与人工智能(AI)及其三个主要子领域——机器学习(ML)、自然语言处理(NLP)和计算机视觉(CV)——的共现率:
w A I s = # of jobs requiring skill s and (ML, NLP, CV or AI in required skills or in job title)  # of jobs requiring skill s w_{AI}^{s} = \frac{\text{\# of jobs requiring skill s and (ML, NLP, CV or AI in required skills or in job title)}}{\text{ \# of jobs requiring skill s}} wAIs= # of jobs requiring skill s# of jobs requiring skill s and (ML, NLP, CV or AI in required skills or in job title)

这个度量直观地捕捉了每个技能 s 与核心AI技能的相关程度。例如,“Tensorflow”这一技能的值为0.9,意味着要求“Tensorflow”的职位中有90%也要求核心AI技能之一或包含核心AI技能在职位标题中。因此,在职位发布中要求“Tensorflow”高度表明该职位与AI相关。相比之下,“Microsoft Office”这一技能的AI相关性度量仅为0.003。在线附录表A1列出了AI相关性度量最高的技能。

在这里插入图片描述

在这里插入图片描述

对于给定的职位发布 j,我们定义其职位发布级别的AI相关性度量 w j A I w_{j}^{AI} wjAI 为所有由职位发布 j 要求的技能的平均技能级别度量 w A I s w_{AI}^{s} wAIs。我们通过对连续的AI度量进行二元转换,如果度量 w j A I w_{j}^{AI} wjAI 超过0.1,则定义每个职位发布 j 为AI相关,这个阈值可以在涵盖整个范围的AI相关技术职位的同时最小化误报,这是基于对数据的手动检查得出的。企业层面的度量 S h a r e A I f , t Share_{AI}^{f,t} Shar

人工智能和LISP(LISt Processing)是紧密相关的两个概念。LISP是一种编程语言,最早于1958年由美国计算机科学家约翰·麦卡锡(John McCarthy)设计并开发。正是基于LISP语言的特性,人工智能领域得到了巨大的推动和发展。 LISP的设计使其非常适用于处理符号化的数据和执行复杂的逻辑运算。这使得LISP成为早期人工智能研究中的首选编程语言。研究人员利用LISP的高度灵活性和表达能力,构建了许多能够模拟人类智能的系统。 LISP为人工智能的发展提供了强大的工具和理论基础。其中最著名的例子是LISP语言中的列表(list)数据结构,它提供了一种方便的方式来存储和操作符号化的知识。这在构建专家系统和知识表示方面起到了重要的作用。 另一个与LISP和人工智能密切相关的概念是LISP的元编程能力。通过LISP的元编程功能,研究人员可以在运行时修改和扩展程序逻辑,这对于开发智能系统的学习和自适应能力非常有帮助。例如,利用LISP的元编程能力,人工智能研究人员能够实现基于案例推理的系统,通过不断添加新的规则和示例,使系统能够从经验中学习。 总之,LISP语言为人工智能的发展做出了巨大贡献。它提供了强大的符号化处理能力和元编程能力,使研究人员能够构建智能系统并实现学习和自适应。至今,LISP仍然在人工智能研究中扮演着重要的角色,它仍然是研究人员用于开发智能系统的一种首选语言。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值