所以YOLO5有没有必要安装Tensort依赖呢?
yolo5官方依赖文件requirements.txt
# YOLOv5 requirements
# Usage: pip install -r requirements.txt
# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil # system resources
PyYAML>=5.3.1
requests>=2.32.0
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
torch>=1.8.0 # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.64.0
ultralytics>=8.2.34 # https://ultralytics.com
# protobuf<=3.20.1 # https://github.com/ultralytics/yolov5/issues/8012
# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet
# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export ----------------------------------------------------------------------
# coremltools>=6.0 # CoreML export
# onnx>=1.10.0 # ONNX export
# onnx-simplifier>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn<=1.1.2 # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1 # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Deploy ----------------------------------------------------------------------
setuptools>=70.0.0 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0
# Extras ----------------------------------------------------------------------
# ipython # interactive notebook
# mss # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6 # COCO mAP
解析:
从 requirements.txt
文件来看,YOLOv5 环境并没有直接要求安装 TensorFlow 或 TensorRT。以下是相关的部分:
- TensorFlow: 被列为可选的导出库(
tensorflow>=2.4.0,<=2.13.1
),这表示如果你需要将模型导出为 TensorFlow 格式,你可以安装它,但它不是必需的。 - TensorRT: 同样被列为可选的导出库(
nvidia-tensorrt
),表示如果你需要 TensorRT 支持,你可以安装它。
这些依赖库的注释掉了,表示它们不是必需的基础库。如果你不需要进行 TensorFlow 导出或 TensorRT 导出,你可以忽略这些依赖。
总结
- YOLOv5 的基本运行不需要 TensorFlow。
- TensorFlow 及 TensorRT 只在特定导出需求下才需要安装。