Hermite矩阵的特征值变分性质

courant–friedrich极小极大定理

矩阵A是一个Hermite矩阵,其特征值 λ 1 ≤ λ 2 ⋯ ≤ λ n \lambda_1\le \lambda_2\dots\le \lambda_n λ1λ2λn

λ i = min ⁡ dim ⁡ V = i , V ∈ C n max ⁡ x ∈ V , ∣ ∣ x ∣ ∣ 2 = 1 x H A x \lambda_i=\min_{\dim V=i,V\in C^n} \quad \max_{x\in V ,||x||_{2}=1} x^HAx λi=dimV=i,VCnminxV,∣∣x2=1maxxHAx

λ i = max ⁡ dim ⁡ V = n − i + 1 , V ∈ C n min ⁡ x ∈ V , ∣ ∣ x ∣ ∣ 2 = 1 x H A x \lambda_i = \max_{\dim V=n-i+1,V\in C^n}\quad \min_{x\in V,||x||_2=1}x^HAx λi=dimV=ni+1,VCnmaxxV,∣∣x2=1minxHAx

Proof:

首先假设A的特征值对应的单位正交特征向量是 u 1 , … , u n u_1,\dots,u_n u1,,un
对于i维空间V, dim ⁡ V ∩ s p a n { u i , … , u n } = dim ⁡ V + dim ⁡ s p a n { u i , … , u n } − dim ⁡ V ∪ s p a n { u i , … , u n } ≥ i + n − i + 1 − n = 1 \dim V\cap span \{u_i,\dots,u_n\} = \dim V+\dim span\{u_i,\dots,u_n\}-\dim V\cup span \{u_i,\dots,u_n\}\ge i+n-i+1-n=1 dimVspan{ui,,un}=dimV+dimspan{ui,,un}dimVspan{ui,,un}i+ni+1n=1

所以假设 x ∈ V ∩ s p a n { u i , … , u n } , x = ∑ k = i n a k u k , ∣ ∣ x ∣ ∣ 2 = 1 x\in V\cap span \{u_i,\dots,u_n\}, x=\sum_{k=i}^na_ku_k,||x||_2=1 xVspan{ui,,un},x=k=inakuk,∣∣x2=1

x H A x = x H ∑ k = i n a k λ k u k = ∑ k = i n a k 2 λ k ≥ λ i x^HAx=x^H\sum_{k=i}^na_k\lambda_ku_k=\sum_{k=i}^na_k^2\lambda_k\ge \lambda_i xHAx=xHk=inakλkuk=k=inak2λkλi

所以
max ⁡ x ∈ V , ∣ ∣ x ∣ ∣ 2 = 1 x H A x ≥ λ i \max_{x\in V ,||x||_{2}=1} x^HAx\ge \lambda_i xV,∣∣x2=1maxxHAxλi

min ⁡ dim ⁡ V = i max ⁡ x ∈ V , ∣ ∣ x ∣ ∣ 2 = 1 x H A x ≥ λ i \min_{\dim V=i} \max_{x\in V ,||x||_{2}=1} x^HAx\ge \lambda_i dimV=iminxV,∣∣x2=1maxxHAxλi

V = s p a n { u 1 , … , u i } V=span \{u_1,\dots,u_i\} V=span{u1,,ui}时候可以取得等号。从而 λ i = min ⁡ dim ⁡ V = i , V ∈ C n max ⁡ x ∈ V , ∣ ∣ x ∣ ∣ 2 = 1 x H A x \lambda_i=\min_{\dim V=i,V\in C^n} \quad \max_{x\in V ,||x||_{2}=1} x^HAx λi=dimV=i,VCnminxV,∣∣x2=1maxxHAx

Weyl不等式

形式一

λ i ( A ) + λ 1 ( B ) ≤ λ i ( A + B ) ≤ λ i ( A ) + λ n ( B ) \lambda_i(A)+\lambda_1(B)\le \lambda_i(A+B)\le \lambda_i(A)+\lambda_n(B) λi(A)+λ1(B)λi(A+B)λi(A)+λn(B)

λ 1 ( B ) ≤ λ i ( A + B ) − λ i ( A ) ≤ λ n ( B ) \lambda_1(B)\le \lambda_i(A+B)-\lambda_i(A)\le \lambda_n(B) λ1(B)λi(A+B)λi(A)λn(B)

Proof:

根据courant–friedrich极小极大定理
λ i ( A + B ) = min ⁡ dim ⁡ V = i , V ∈ C n max ⁡ x ∈ V x H ( A + B ) x x H x ≤ min ⁡ dim ⁡ V = i , V ∈ C n ( max ⁡ x ∈ V x H A x x H x + max ⁡ x ∈ V x H B x x H x ) ≤ λ i ( A ) + λ n ( B ) \begin{aligned}&\lambda_i(A+B)=\min_{\dim V=i,V\in C^{n}} \quad \max_{x\in V} \frac{x^H(A+B)x}{x^Hx}\\&\le \min_{\dim V=i,V\in C^{n}} \quad \bigg(\max_{x\in V} \frac{x^HAx}{x^Hx}+\max_{x\in V} \frac{x^HBx}{x^Hx}\bigg)\le \lambda_{i}(A)+\lambda_n(B)\end{aligned} λi(A+B)=dimV=i,VCnminxVmaxxHxxH(A+B)xdimV=i,VCnmin(xVmaxxHxxHAx+xVmaxxHxxHBx)λi(A)+λn(B)

同理可证。

形式二

注意到 ∣ ∣ A ∣ ∣ 2 = max ⁡ i = 1 … , n ∣ λ i ( A ) ∣ ||A||_2=\max_{i=1\dots,n} |\lambda_i(A)| ∣∣A2=maxi=1,nλi(A)

max ⁡ i = 1 , … , n ∣ λ i ( A + B ) − λ i ( A ) ∣ ≤ ∣ ∣ B ∣ ∣ 2 \max_{i=1,\dots,n}|\lambda_i(A+B)-\lambda_i(A)|\le ||B||_2 i=1,,nmaxλi(A+B)λi(A)∣∣B2

形式三

若B是半正定,那么 λ 1 ( B ) = 0 \lambda_1(B)=0 λ1(B)=0

λ i ( A ) ≤ λ i ( A + B ) \lambda_i(A)\le \lambda_i(A+B) λi(A)λi(A+B)

Hoffman–Wielandt不等式

∑ i = 1 n ( λ i ( A ) − λ i ( B ) ) 2 ≤ ∣ ∣ A − B ∣ ∣ F 2 \sum_{i=1}^n(\lambda_i(A)-\lambda_i(B))^2\le ||A-B||_F^2 i=1n(λi(A)λi(B))2∣∣ABF2

Cauchy交错定理

形式一

如果C是A的n-1阶主子式,那么
λ i ( A ) ≤ λ i ( C ) ≤ λ i + 1 ( A ) , i = 1 , … , n − 1 \lambda_i(A)\le\lambda_i(C)\le\lambda_{i+1}(A),i=1,\dots,n-1 λi(A)λi(C)λi+1(A),i=1,,n1

推论

λ \lambda λ是A的m重特征值,那么 λ \lambda λ至少是C的m-1重特征值。

形式二

如果C是A的n-k阶主子式,那么
λ i ( A ) ≤ λ i ( C ) ≤ λ i + k ( A ) , i = 1 , … , n − k \lambda_i(A)\le\lambda_i(C)\le\lambda_{i+k}(A),i=1,\dots,n-k λi(A)λi(C)λi+k(A),i=1,,nk

形式三

存在 X ∈ C n × m , X H X = I m , n ≥ m X\in C^{n\times m},X^HX=I_m,n\ge m XCn×m,XHX=Im,nm,那么
λ i ( A ) ≤ λ i ( X H A X ) ≤ λ i + n − m ( A ) , i = 1 , … , m \lambda_i(A)\le\lambda_i(X^HAX)\le\lambda_{i+n-m}(A),i=1,\dots,m λi(A)λi(XHAX)λi+nm(A),i=1,,m

Proof:

根据courant–friedrich极小极大定理
λ i ( X H A X ) = min ⁡ dim ⁡ V = i , V ∈ C m max ⁡ x ∈ V x H X H A X x x H x = min ⁡ dim ⁡ V = i , V ∈ C m max ⁡ x ∈ V x H X H A X x ( X x ) H X x = min ⁡ dim ⁡ V = i , V ∈ C m , W = X V max ⁡ y = X x ∈ W y H A y y H y ≥ min ⁡ dim ⁡ W = i , W ∈ C n max ⁡ y = X x ∈ W y H A y y H y = λ i ( A ) \begin{aligned}&\lambda_i(X^HAX)=\min_{\dim V=i,V\in C^{m}} \quad \max_{x\in V} \frac{x^HX^HAXx}{x^Hx}=\min_{\dim V=i,V\in C^{m}} \quad \max_{x\in V} \frac{x^HX^HAXx}{(Xx)^HXx}\\&=\min_{\dim V=i,V\in C^{m},W=XV} \quad \max_{y=Xx\in W} \frac{y^HAy}{y^Hy}\ge \min_{\dim W=i,W\in C^{n}} \quad \max_{y=Xx\in W} \frac{y^HAy}{y^Hy}=\lambda_i(A)\end{aligned} λi(XHAX)=dimV=i,VCmminxVmaxxHxxHXHAXx=dimV=i,VCmminxVmax(Xx)HXxxHXHAXx=dimV=i,VCm,W=XVminy=XxWmaxyHyyHAydimW=i,WCnminy=XxWmaxyHyyHAy=λi(A)

最后一个不等式成立是因为W=XV这个子空间变换虽然不改变子空间维数,但是并不是从m维复空间到n维复空间的满射。比如 X = ( I m 0 n − m , m ) X=\begin{pmatrix}I_m\\0_{n-m,m}\end{pmatrix} X=(Im0nm,m), W = X V = ( V 0 n − m , m ) W=XV=\begin{pmatrix}V\\0_{n-m,m}\end{pmatrix} W=XV=(V0nm,m)并不能代表整个n维复空间。左边min函数的约束强,所以成立不等式。

同样的,

λ i ( X H A X ) = max ⁡ dim ⁡ V = m − i + 1 , V ∈ C m min ⁡ x ∈ V x H X H A X x x H x = max ⁡ dim ⁡ V = m − i + 1 , V ∈ C m min ⁡ x ∈ V x H X H A X x ( X x ) H X x = max ⁡ dim ⁡ V = m − i + 1 , V ∈ C m , W = X V min ⁡ y = X x ∈ W y H A y y H y ≤ max ⁡ dim ⁡ W = m − i + 1 , W ∈ C n min ⁡ y = X x ∈ W y H A y y H y = λ n − m + i ( A ) \begin{aligned}&\lambda_i(X^HAX)=\max_{\dim V=m-i+1,V\in C^{m}} \quad \min_{x\in V} \frac{x^HX^HAXx}{x^Hx}=\max_{\dim V=m-i+1,V\in C^{m}} \quad \min_{x\in V} \frac{x^HX^HAXx}{(Xx)^HXx}\\&=\max_{\dim V=m-i+1,V\in C^{m},W=XV} \quad \min_{y=Xx\in W} \frac{y^HAy}{y^Hy}\le \max_{\dim W=m-i+1,W\in C^{n}} \quad \min_{y=Xx\in W} \frac{y^HAy}{y^Hy}=\lambda_{n-m+i}(A)\end{aligned} λi(XHAX)=dimV=mi+1,VCmmaxxVminxHxxHXHAXx=dimV=mi+1,VCmmaxxVmin(Xx)HXxxHXHAXx=dimV=mi+1,VCm,W=XVmaxy=XxWminyHyyHAydimW=mi+1,WCnmaxy=XxWminyHyyHAy=λnm+i(A)

樊氏迹极小化定理

∑ i = 1 n λ i ( A ) = min ⁡ X ∈ C n × m , X H X = I m t r ( X H A X ) \sum_{i=1}^n\lambda_i(A)=\min_{X\in C^{n\times m},X^HX=I_m}tr(X^HAX) i=1nλi(A)=XCn×m,XHX=Immintr(XHAX)

这是Cauchy交错定理中形式三左边取等部分。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值