Windows环境下配置强化学习依赖包gym(2022最新版)

本博客指导在Windows上使用Anaconda创建虚拟环境gymPython36,并激活环境,安装gym及其依赖,最后通过测试程序验证配置成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请在配置完成Anaconda后阅读本博客:

1.创建虚拟环境

当然,你可以直接在你现有的虚拟环境中安装gym依赖包,创建新的虚拟环境是为了便于管理。

打开cmd命令行窗口,或者打开Anaconda Prompt,输入如下命令点击回车,结果就是创建了一个名为gymPython36的虚拟环境,其中python版本为3.6:

conda create -n gymPython36 python=3.6

2.激活创建的虚拟环境

执行完上一步后继续在该窗口中输入如下命令后点击回车:

activate gymPython36

3.导入依赖包

继续在上面的窗口中依次输入如下命令后点击回车:

conda install gym
# 本命令是为了后续测试程序能够顺利执行
conda install pyglet
conda install pandas
conda install tensorflow
conda install matplotlib

4.执行测试程序

在python的IDE(如pycharm)中运行如下程序:

import gym

env = gym.make( 'CartPole-v0' )

for i_episode in range( 20 ):
	state = env.reset()

	for t in range( 1000 ):
		env.render()
		print( state )
		action = env.action_space.sample()
		state, reward, done, _ = env.step( action )

		if done:
			print('Episode #%d finished after %d timesteps' % (i_episode, t))
			break

如果程序正确执行并得出类似如下的结果,说明你的gym配置成功了:

### 配置强化学习环境教程 #### 软件需求 为了构建一个完整的强化学习环境,需要准备以下软件和库: - Python 3.x 版本作为主要编程语言[^2]。 - TensorFlow 或 PyTorch 等深度学习框架用于实现复杂的模型训练。 - OpenAI Gym 是一种常用的开源工具包,提供多种标准化的测试环境(如 CartPole-v1 和 Pendulum-v0),适合初学者快速上手并验证算法效果[^1]。 #### 创建虚拟环境 推荐通过 `conda` 来管理不同项目的独立运行空间。这有助于隔离各个项目所需的特定版本依赖项,从而减少冲突风险。然而需要注意的是,在某些特殊硬件架构下(例如 ARM 设备),可能无法完全兼容 conda 的全部功能,则需改用系统自带 python 解决方案完成相应设置工作: 对于支持 Conda 的情况: ```bash # 安装 Miniconda 并初始化完成后执行如下操作新建名为rl_env的新环境 conda create -n rl_env python=3.8 # 激活刚才建立好的新环境 conda activate rl_env ``` 如果不适用Conda或者目标设备属于ARM系列处理器的话可以直接基于原生Python来进行部署: ```bash # 更新pip至最新状态以便后续顺利安装其他组件 python3 -m pip install --upgrade pip setuptools wheel ``` #### 安装必要的库文件 无论采取哪种方式组建基础结构都需要引入几个关键模块来支撑整个流程正常运转下去: 当处于由Conda主导控制之下时可以通过它内置仓库获取所需资源: ```bash # 同时加入Tensorflow以及OpenAiGym两部分构成完整体系 conda install tensorflow gym ``` 而针对那些只能依靠官方PyPI服务器下载的情形则应按照下面指示行动起来吧! ```bash # 使用pip命令分别加载上述提及到的各项要素进去 pip install numpy scipy matplotlib pandas scikit-learn tensorflow==2.* gym[atari,classic_control] ``` 另外如果有幸拥有Nvidia品牌的GPU装置还可以进一步挖掘其潜力加速运算过程哦~只需额外指定好相匹配规格编号即可享受更高效的体验啦! ```bash # 查询本地驱动程序所适配的具体标签号 nvcc --version # 假设查询结果显示为11.2那么就应当挑选相近范围内的选项比如说这里选用的是cuDNN对应关系表里头列举出来的那个值即cudatoolkit=11.2 cudnn=8.* conda install cudatoolkit=11.2 cudnn=8.* ``` 最后记得检验一遍当前状况是否一切妥当无误之后再正式开启旅程哟! ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒冢人家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值