经典时序预测算法

记录学习安全库存需求预测路线、心得


前言

时序预测就是利用过去一段时间的数据来预测未来一段时间内的信息。预测结果依赖于数据在时间上的先后顺序,意思是,相同的数据改变输入顺序会得到不同的结果。

时序数据的预测涉及多种方式,如经典的时序预测方法、机器学习中的算法、深度神经网络等。


一、经典时序预测算法

1.AR-Aotu Regressive Model

自相关:自身前一部分的数据与后一部分数据有相关性;利用自相关性建立方程,进行预测分析。

如下公式为,p阶的自回归过程——AR(p);

X_{t}(随机变量)的值与以前p期的序列值X_{t-1},X_{t-2},X_{t-3}....X_{t-p}(自变量)相关;

\phi _{p}表示自回归系数;

U_{t}表示白噪声,是时间序列中的数值的随机波动,但是这些波动会相互抵消,最终是0。

x_{t}=\phi _{1}*x_{​{​{\color{Blue} t-1}}}+\phi _{2}*x_{t-2}+....+\phi _{​{\color{Red} p}}*x_{​{\color{Blue} t-p}}+{\color{Red} u_{t}}               

 当只有一个时间记录点,称为一阶自回归过程——AR(1)。

x_{t}=\phi _{1}*x_{t-1}+u_{t}         

2.MA-Moving Average Model

一段时间序列中白噪声序列进行加权和,可以得到移动平均方程。如下方程,为q阶移动平均过程,表示为MA(q)。

 x_{t}={u_{t}}+\phi _{1}*x_{t-1}+\phi _{2}*x_{t-2}+....+\phi _{q}*x_{ t-q}

x_{t}(随机变量)的值与以前q期的平均值X_{t-1},X_{t-2},X_{t-3}....X_{t-q}(自变量)相关;

\phi _{q}表示自回归系数;

U_{t}表示白噪声,是时间序列中的数值的随机波动,但是这些波动会相互抵消,最终是0。

3.ARMA-Auto Regressive Moving Average Model

 自回归平均移动模型,由自回归与平均移动模型组成,可以表示为ARMA(p,q)。p自回归阶数,q是移动平均阶数。

AR可以解决当前数据与后期数据之间的关系,MA则可以解决随机变动也就是噪声的问题。

x_{t}={u_{t}}+\phi _{1}*x_{t-1}+\phi _{2}*x_{t-2}+....+\phi _{q}*x_{ t-q}+\vartheta _{1}*x_{t-1}+\vartheta _{2}*x_{t-2}+...+\vartheta _{p}*x_{t-p}

4.ARIMA-Auto Regressive Integrate Moving Average Model

差分自回归平均移动模型;

基于平稳的时间序列或者差分后是稳定的序列;

可以表示为ARIMA(p,d,q),其中p为自回归阶数,q为移动平均阶数,d为时间成为平稳时所做的差分次数。

补充知识点:

1、与ARMA的区别,ARIMA将非平稳的数据转化为平稳;

2、白噪声序列:特点表现在任何两个时点的随机变量都不相关,序列中没有任何可以利用的动态规律;

3、平稳非白噪声序列:例如:价格围绕价值波动;

4、平稳序列:如果时间序列\left \{ X_{t},t \epsilon T\right \}在某一常数附近波动且波动范围有限,即有常数均值和常数方差,并且相距k期的序列变量之间的影响程度是一样的,则称\left \{ X_{t},t \epsilon T\right \}为平稳序列。

5、非平稳序列:大多数时间序列都是非平稳的,一般可以通过差分、取对数等方法转化成平稳时间序列,若不成就不能使用平稳时间序列分析方法了。

6、拖尾: 自相关系数以指数率单调递减或震荡衰减;

      相关系数度ACF量指的是两个不同事件彼此之间的相互影响程度;

      自相关系数度量的是同一事件在两个不同时期之间的相关程度,形象的讲就是度量自己          过去的行为对自己现在的影响
 

7、截尾:偏自相关系数PACF迅速降低到0附近,序列从某个时点变得非常小

 5.步骤

a、时间序列的预处理

(1)、平稳性检验:
        两种检验方法,一种是根据时序图和自相关图的特征做出判断的图检验,该方法操作简单、应用广泛,缺点是带有主观性;另一种是构造检验统计量进行的方法,目前最常用的方法是单位根检验

  •  时序图检验:

根据平稳时间序列的均值和方差都为常数的性质,平稳序列的时序图显示该序列值始终在一个常数附近随机波动,而且波动的范围有界;如果有明显的趋势性或者周期性那它通常不是平稳序列。

  • 自相关图检验:

平稳序列具有短期相关性,这个性质表明对平稳序列而言通常只有近期的序列值对现时值得影响比较明显,间隔越远的过去值对现时值得影响越小。

随着延迟期数k 的增加,平稳序列的自相关系数P:(延迟k期)会比较快的衰减趋向于零,并在零附近随机波动,而非平稳序列的自相关系数衰减的速度比较慢,这就是利用自相关图进行平稳性检验的标准。

  • 单位根检验

单位根检验是指检验序列中是否存在单位根,因为存在单位根就是非平稳时间序列了。
 

b.平滑处理(非平稳转化为平稳)

(1)、差分运算:

        p阶差分:相距一期的两个序列值之间的减法运算称为1阶差分运算;

        k歩差分:相距k期的两个序列值之间的减法运算称为k 步差分运算。
 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SVM(支持向量机)是一种常用的机器学习算法,广泛应用于分类和回归问题中。然而,对于时序预测问题,使用传统的SVM算法可能不太合适。为了解决这个问题,有人提出了一种基于SVM的时序预测算法。 这种算法的原理是将时序数据转换为固定维度的特征向量,然后使用SVM进行训练和预测。具体而言,算法的步骤如下: 1. 数据预处理:首先,需要将原始的时序数据进行预处理,包括去除噪声、平滑处理、标准化等。这样可以提高数据的质量和可靠性。 2. 特征提取:接下来,需要从时序数据中提取特征。常用的方法包括统计特征(如均值、方差、最大值等)、频域特征、时域特征等。提取到的特征将作为SVM算法的输入。 3. 特征选择:由于提取到的特征可能存在冗余或者噪声,需要通过特征选择来选取最相关的特征。常用的特征选择方法有相关系数、互信息、卡方检验等。 4. 模型训练:在选取好的特征后,使用SVM算法对训练数据进行训练。在训练过程中,通过调整SVM的参数来优化模型性能。 5. 预测:训练完成后,使用训练好的模型对测试数据进行预测。通过将特征向量输入到SVM模型中,得到预测结果。 总结来说,基于SVM的时序预测算法的原理是将时序数据转化为特征向量,使用SVM算法进行训练和预测。通过提取和选择合适的特征,可以提高预测模型的准确性和鲁棒性。这种算法在时间序列分析、股票预测、天气预测等领域有着广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值