利用Torchvision中Mask-RCNN实现实例分割

引言

Mask-RCNN是Faster-RCNN的扩展版本,它不仅能够完成对象检测任务,还能进行像素级的实例分割,是当前计算机视觉领域的热门模型之一。本文将带您从Mask-RCNN的基本原理入手,结合PyTorch实现对象检测和实例分割的完整流程。


一. Mask-RCNN模型结构与特点

1. Mask-RCNN模型结构与特点

Mask-RCNN 是一种用于对象检测和实例分割的深度学习模型。它在 Faster-RCNN 的基础上引入了一个新的分支,用于预测每个目标的像素级分割掩码。以下是它的核心特点和模型结构:


1.1 Mask-RCNN模型结构

Mask-RCNN 的主要结构包括以下几个部分:

  1. Backbone(主干网络)

    • 用于提取输入图像的特征。
    • 常用的主干网络包括 ResNet(带或不带 FPN)等。
    • 特点:可以捕获多尺度特征,提高对象检测性能。
  2. FPN(Feature Pyramid Network,可选)

    • 用于生成多尺度的特征图,提高小目标检测的效果。
    • 如果使用 FPN,则特征图会从多层特征中整合。
  3. RPN(Region Proposal Network)

    • 提供候选区域建议(Region Proposals)。
    • 输出候选框及其分类(是否为目标)。
  4. ROI Align

    • 解决 Faster-RCNN 中的 ROI Pooling 精度问题,通过双线性插值对特征进行对齐。
    • 特点:在边界框上实现亚像素级的精确对齐,提高了实例分割任务的性能。
  5. 检测头(Classification & Box Regression)

    • 两个分支:
      • 分类分支:预测候选框中的目标类别。
      • 边界框回归分支:精确调整候选框的位置。
  6. Mask分割头(FCN)

    • 使用一个全卷积网络(FCN)预测目标的分割掩码。
    • 每个类别一个单独的二值掩码。
    • 输出:分割掩码的像素级别预测,与输入候选框对齐。

1.2 Mask-RCNN的多任务损失

Mask-RCNN 使用多任务学习框架,损失函数包括以下三部分:

  1. 分类损失:用于预测类别。
  2. 边界框回归损失:用于精确调整候选框位置。
  3. 掩码损失:用于预测分割掩码,采用像素级的交叉熵损失。

公式

L=Lcls+Lbbox+LmaskL = L_{cls} + L_{bbox} + L_{mask}


1.3 Mask-RCNN与Faster-RCNN的比较
特性Faster-RCNNMask-RCNN
功能对象检测对象检测 + 实例分割
新增模块增加了分割头(FCN)
ROI处理ROI PoolingROI Align(更精确)
损失函数分类损失 + 回归损失分类损失 + 回归损失 + 掩码损失
性能精度较高,缺少分割功能精度更高,支持像素级分割

1.4 Mask-RCNN的主要优点
  1. 功能强大:支持对象检测和像素级实例分割,适合复杂场景。
  2. 灵活扩展:通过简单地增加分支模块,可以完成更多任务(如关键点检测、全景分割)。
  3. 高精度:ROI Align 改进了特征对齐精度,提高了整体性能。

1.5 Mask-RCNN模型的输出
  1. boxes:目标的边界框坐标。
  2. labels:目标类别。
  3. scores:目标的置信度分数。
  4. masks:目标的分割掩码,形状与 boxes 一一对应。

Mask-RCNN 在对象检测领域是一种功能全面且表现优异的模型,特别适合需要像素级分割的任务,如医学图像分析、自动驾驶等应用场景。


二. Mask-RCNN的模型构建

我使用了Torchvision提供的预训练模型maskrcnn_resnet50_fpn,并根据需要进行调整,例如修改类别数量。

示例代码:构建Mask-RCNN模型

import torchvision
import torch

# 构建Mask-RCNN模型
def get_model_instance_segmentation(num_classes):
    # 加载预训练的Mask-RCNN模型
    model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
    
    # 替换分类头
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features, num_classes)
    
    # 替换Mask头
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    model.roi_heads.mask_predictor = torchvision.models.detection.mask_rcnn.MaskRCNNPredictor(in_features_mask,
                                                                                              hidden_layer,
                                                                                              num_classes)
    return model

# 实例化模型,假设有2个类别(背景+行人)
model = get_model_instance_segmentation(num_classes=2)

三. 数据集准备与训练

训练Mask-RCNN需要一个格式化的数据集,例如COCO格式或自定义格式。以下代码展示如何定义一个自定义数据集类,并进行模型训练。

示例代码:自定义数据集类

from PIL import Image
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
import os

class PennFudanDataset(Dataset):
    def __init__(self, root_dir):
        self.root_dir = root_dir
        self.transforms = T.Compose([T.ToTensor()])
        self.imgs = sorted(os.listdir(os.path.join(root_dir, '')))
        self.masks = sorted(os.listdir(os.path.join(root_dir, '')))

    def __len__(self):
        return len(self.imgs)

    def __getitem__(self, idx):
        img_path = os.path.join(self.root_dir, '', self.imgs[idx])
        mask_path = os.path.join(self.root_dir, '', self.masks[idx])
        img = Image.open(img_path).convert("RGB")
        mask = Image.open(mask_path)

        mask = np.array(mask)
        obj_ids = np.unique(mask)[1:]  # Skip the background id (0)
        masks = (mask == obj_ids[:, None, None]).astype(np.uint8)

        num_objs = len(obj_ids)
        boxes = []
        for i in range(num_objs):
            pos = np.where(masks[i])
            xmin = np.min(pos[1])
            xmax = np.max(pos[1])
            ymin = np.min(pos[0])
            ymax = np.max(pos[0])
            boxes.append([xmin, ymin, xmax, ymax])

        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        labels = torch.ones((num_objs,), dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)
        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        target = {
            "boxes": boxes,
            "labels": labels,
            "masks": masks,
            "image_id": image_id,
            "area": area,
            "iscrowd": iscrowd
        }

        img = self.transforms(img)  # Apply transform to image

        return img, target

示例代码:模型训练

import torch
from torch.utils.data import DataLoader

# 训练相关参数
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
dataset = CustomDataset(root="path/to/dataset", transforms=None)
data_loader = DataLoader(dataset, batch_size=2, shuffle=True, num_workers=4)

# 实例化模型并移动到设备
model = get_model_instance_segmentation(num_classes=2)
model.to(device)

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.005, momentum=0.9, weight_decay=0.0005)

# 训练模型
for epoch in range(10):  # 训练10个周期
    model.train()
    for images, targets in data_loader:
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        
        # 计算损失并反向传播
        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict.values())
        
        optimizer.zero_grad()
        losses.backward()
        optimizer.step()
        
    print(f"Epoch [{epoch+1}/10], Loss: {losses.item()}")

四. 预测与可视化

训练完成后,可以使用训练好的模型对新图像进行预测,并将结果进行可视化。

示例代码:预测

import matplotlib.pyplot as plt
import matplotlib.patches as patches

def visualize_predictions(image, predictions):
    fig, ax = plt.subplots(1, figsize=(12, 9))
    ax.imshow(image)
    
    for box, mask in zip(predictions[0]['boxes'], predictions[0]['masks']):
        x_min, y_min, x_max, y_max = box.int()
        rect = patches.Rectangle((x_min, y_min), x_max - x_min, y_max - y_min, linewidth=2, edgecolor='r', facecolor='none')
        ax.add_patch(rect)
        
        # 绘制掩码
        mask = mask[0].cpu().numpy()
        ax.imshow(mask, alpha=0.5)
    
    plt.show()

# 加载测试图像
test_image = Image.open("path/to/test/image.jpg").convert("RGB")
test_image_tensor = transform(test_image).unsqueeze(0).to(device)

# 推理
model.eval()
with torch.no_grad():
    predictions = model(test_image_tensor)

visualize_predictions(test_image, predictions)

实验结果可视化:


总结

我分析了Mask-RCNN模型的架构,从Mask-RCNN模型的原理出发,结合PyTorch实现了对象检测与实例分割的完整流程,包括模型构建、自定义数据集、模型训练及预测可视化。

Mask RCNN 是基于Kaiming 之前的工作 FPN (Feature Pyramid Network) 很形象地说就是用FPN产生的检测结果, 后面加了一个分割的网络. 文章中用到了 Top-Down + Bottom-Up 最近很流行的多层网络, 因为最开始Faster-RCNN只是在最后一层上面检测, 很容易丢掉小目标物体, 并且对细节遮挡也很不敏感. 最近的趋势就是结合多层 特征, 答主孔涛就很早发现了这个insight, 做出了HyperNet 并中了CVPR roal!!!作者:Oh233 链接:https://www.zhihu.com/question/57403701/answer/153060743 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 Mask R-CNN 这个结果确实很强,但要同时注意它主要是加上了许多(都是很有用的)engineering techniques 。 比如说 anchor 从 12 增加到了15个,图像 size 从600变成了800,还有ROI batch size变到了512,从FPN那篇paper来看,这些 better practice 会有对性能十分明显的提升 (table 3 baseline: AP=26.3 -> 31.6)。而我们组16年的coco分割竞赛冠军 ,Fully Convolutional Instance-aware Semantic Segmentation (FCIS)的代码昨晚终于开源了。限于计算资源,我们并没有加上这些改进。这些改进应该是比较 general 的,也会适用于 FCIS。欢迎大家试用一波。FCIS 提供了一种简单高效的框架去解决 instance segmentation 的问题。跟之前 COCO 2015 的冠军 MNC 相比,它的主要不同在于 mask estimation 和 detection 是共同做的,而不是先估计 mask 再做 detection。在 FCIS 中 detection/mask estimation 之间通过 inside/outside score map 互相影响,利用了这两个紧密相连 task 之间的共性。现在 release 版本基于支持多卡训练的MXNet,msracver/FCIS。实际上大概今年一月份我们就已经写出了外面可以使用的Caffe版本,但是当时官方 Caffe 只支持单卡做复杂任务的训练,对于COCO这种大规模数据集来说用单卡训练的话一下子几周的时间就过去了。考虑到大家用起来会非常蛋疼,最后还是决定没有release这个版本。
### Mask-RCNN实现效果评估 Mask-RCNN 是一种强大的目标检测和实例分割算法,在多个领域展示了卓越的效果。该模型不仅能够识别图像中的物体并绘制边界框,还能为每个检测到的目标生成精确的像素级掩码[^1]。 #### 数据集与应用场景的影响 在特定的应用场景下,比如停车场监控系统中,Mask-RCNN 能够区分可用停车位(绿色框)和已被占用的车位(蓝色框)。然而,对于较小车辆或特殊位置停放的情况,当前版本可能存在一定的局限性,未能完全覆盖所有类型的停车情况[^2]。 #### 开源项目验证 通过开源平台上的实际案例可以进一步观察 Mask-RCNN 的表现。例如,在 GitHub 上的一个经典模型例子库中,提供了详细的实验结果展示,证明了此方法在多种复杂环境下的有效性[^3]。 为了更直观地理解 Mask-RCNN 的工作原理及其优势所在,下面给出一段简单的 Python 代码用于加载预训练权重并对新图片执行预测操作: ```python import torch from torchvision import models, transforms from PIL import Image import matplotlib.pyplot as plt # 加载预训练的 Mask R-CNN 模型 model = models.detection.maskrcnn_resnet50_fpn(pretrained=True) model.eval() # 图像预处理函数定义 preprocess = transforms.Compose([ transforms.ToTensor(), ]) def predict(image_path): input_image = Image.open(image_path).convert("RGB") tensor_input = preprocess(input_image) with torch.no_grad(): prediction = model([tensor_input]) return prediction result = predict('path_to_your_test_image.jpg') fig, ax = plt.subplots(1, figsize=(12,8)) ax.imshow(result[0]['masks'][0].permute(1,2,0), alpha=0.5); for box in result[0]["boxes"]: rect = patches.Rectangle((box[0], box[1]), box[2]-box[0], box[3]-box[1], linewidth=1, edgecolor='r', facecolor="none") ax.add_patch(rect) plt.show() ``` 这段代码实现了对给定测试图片应用 Mask-RCNN 进行推理的过程,并将得到的对象掩码以及包围盒叠加显示出来以便于查看最终的检测成果。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值