YOLOv8模型介绍与开发环境搭建

一、YOLOv8 简介

YOLOv8 (“You Only Look Once” v8) 是 YOLO 系列模型的最新版本,由 Ultralytics 团队开发。作为一种一阶步目标检测网络,YOLOv8 具备速度快、精度高的特点,充分发挥在目标检测、实例分割、姿态估计和旋转目标检测等多个领域。

YOLOv8 具备易于使用的命令行界面和丰富的 API 接口,可以完编适配于各种实际场景,包括转播视频分析、安全监控、旅游相片分析等。

二、YOLOv8 与其他版本的区别

YOLOv8 在继承前代模型优点的基础上,在多个方面做出了重大优化:

  • 模型结构优化:提供更深层的注意功能,使用更高效的跨阶段泛量连接 (CSP) 和并行跨二维注意功能图 (PAFPN) 等模块。
  • 训练流程改进:增强了自选均值样本和光流变换等数据增强手段,改善模型治疗化和改善二次泛量选择算法,提升模型激活出给多样化场景的能力。
  • 使用容易性:完全适配于 Ultralytics HUB 和自定义优化算法,提供高效计算方案。

目前,已经有众多实际场景实践了 YOLOv8,如安全监控中的行为识别,自动驾驶中的目标路径预测,以及人脸识别中的等级别判断等。

三、YOLOv8 开发环境搭建

1. 硬件环境要求

在进行 YOLOv8 实验和应用时,需要配备相应的硬件环境:

  • 操作系统:Windows 10 64 位 或 Linux Ubuntu 18.04+
  • 处理器 (CPU):Intel i7 或更高配置
  • 内存:16GB 或以上
  • 显卡 (GPU):NVIDIA GTX 1080 Ti 或更高配置,最好支持 CUDA 11.3+

如果需要扩大模型训练能力,可考虑使用 RTX 3090/4090 等高级显卡,可能大幅度提升动态性能。

四、YOLOv8 主要功能概述

YOLOv8 提供了一系列强大的功能,涵盖多个计算机视觉任务:

  • 目标检测(Detect):YOLOv8 能够快速准确地检测图像中的多个目标。
  • 图像分割(Segment):YOLOv8 可以对图像进行像素级的分割,适用于需要精确定位目标边界的场景。
  • 姿态估计(Pose):YOLOv8 能够识别并估计图像中人物的姿态,这对于动作识别和人机交互等应用非常有用。
  • 旋转目标检测(OBB):YOLOv8 支持 OBB 检测,能够更准确地检测具有旋转角度的目标。

五、YOLOv8 导出与预测

1. 导出模型

YOLOv8 支持将模型导出为 ONNX 格式,使其可以在不同的平台上运行。以下是一个简单的导出命令示例:

yolo export model=yolov8s-obb.pt format=onnx

这条命令将 YOLOv8 的 OBB 检测模型导出为 ONNX 格式,方便后续的部署和应用。

2. 进行模型预测

YOLOv8 还支持对图像进行预测,用户可以通过以下命令对指定图像进行预测:

yolo obb predict model=yolov8n-obb.pt source=plane_03.jpg

这条命令使用 YOLOv8 的 OBB 检测模型对 plane_03.jpg 图像进行预测,输出检测结果。

六、YOLOv8 不同精度模型解析

YOLOv8 提供了不同精度的模型版本,以满足不同应用场景的需求。这些模型在参数数量和推理速度上有所不同,用户可以根据具体需求选择合适的模型版本。

1. 参数数量与精度

不同 YOLO 版本在参数数量和精度(COCO mAPval)上的表现如下:

模型参数数量COCO mAP
YOLOv8n3.2M37.5
YOLOv8s11.2M44.8
YOLOv8m25.9M50.2
YOLOv8l43.7M53.5
YOLOv8x68.2M55.1

从表中可以看出,YOLOv8 在参数数量较少的情况下,仍然能够达到较高的精度,表明其在模型优化方面取得了显著进步。

2. 推理速度与精度

不同 YOLO 版本在推理速度(Latency A100 TensorRT FP16)和精度(COCO mAP50-95)上的表现如下:

模型延迟 (ms)COCO mAP
YOLOv8n1.237.5
YOLOv8s1.944.8
YOLOv8m2.850.2
YOLOv8l4.353.5
YOLOv8x6.055.1

模型精度对比:

YOLOv8 在保持较高精度的同时,推理速度也得到了显著提升,使得其在实时应用中更具优势。

我使用YOLOV8s这个模型在自定义数据集上完成了实验,训练了15个epoch,mAP达到了90.66%,实验结果如图所示:

七、总结

YOLOv8 作为 YOLO 系列的最新版本,在目标检测、图像分割、姿态估计和 OBB 检测等方面表现出色。通过导出 ONNX 格式模型和可视化工具,YOLOv8 提高了模型的可移植性和易用性。不同精度的模型版本满足了不同应用场景的需求,使得 YOLOv8 在实时应用中更具优势。熟练掌握模型预测和导出命令,可以帮助用户更好地应用 YOLOv8 进行目标检测和分析。

本文详细介绍了 YOLOv8 模型及其导出方法。随着深度学习技术的不断发展,YOLOv8 将在更多领域发挥重要作用,推动目标检测技术的进步,感谢观看。

### YOLOv8 模块功能使用教程 #### 加载预训练模型 为了加载预训练的YOLOv8模型,可以利用`ultralytics`库中的`YOLO`类。当指定路径为本地文件时(例如`./yolov8n.pt`),程序会尝试从该位置读取模型权重;如果仅提供名称而不带路径,则默认会在网络上查找并自动下载相应版本的模型[^1]。 ```python from ultralytics import YOLO # 如果已经下载了模型到本地 model = YOLO('./yolov8n.pt') # 或者如果没有下载过可以直接通过名字获取官方提供的预训练模型 # model = YOLO('yolov8n') ``` #### 训练自定义数据集 对于想要基于特定场景微调YOLOv8的情况,可以通过配置参数来启动训练过程。这通常涉及到准备自己的标注数据以及调整超参设置以适应具体的应用需求。 ```python results = model.train(data='path/to/dataset.yaml', epochs=100, imgsz=640) ``` 这里假设有一个名为`dataset.yaml`的数据描述文件位于指定目录下,它包含了图像存储地址及其对应的标签信息等必要细节。 #### 执行推理预测 完成上述准备工作之后,在实际应用环境中就可以轻松地让YOLOv8执行目标检测任务了。只需简单传递一张或多张待测图片给已实例化的对象即可获得识别结果。 ```python predictions = model.predict(source='image.jpg', save=True) for prediction in predictions: boxes = prediction.boxes.cpu().numpy() print(boxes) ``` 这段代码展示了如何对单个输入源进行推断操作,并将输出保存至磁盘的同时打印出边界框坐标数组。 #### 集成其他编程环境 除了Python之外,还有针对不同开发平台的支持方案可供选择。比如有开发者分享了关于怎样借助易语言实现对YOLOv8 API接口调用的经验[^2]。不过需要注意的是这类第三方集成方式可能依赖于额外安装某些桥接组件或是遵循特殊的编码规范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值