### 使用PINN求解Allen-Cahn方程的Python示例
以下是基于物理信息神经网络(PINN)框架实现Allen-Cahn方程的一个简单示例代码。该代码展示了如何通过深度学习方法结合偏微分方程约束来逼近其数值解。
#### Python代码实现
```python
import tensorflow as tf
import numpy as np
from scipy.optimize import fsolve
# 定义超参数
layers = [2, 50, 50, 50, 1] # 网络结构
lb = [-1.0, 0.0] # 输入变量下界 (x,t)
ub = [1.0, 1.0] # 输入变量上界 (x,t)
# 初始化权重和偏差
def initialize_NN(layers):
weights = []
biases = []
for i in range(len(layers)-1):
W = tf.Variable(tf.random_normal([layers[i], layers[i+1]], dtype=tf.float32), dtype=tf.float32)
b = tf.Variable(tf.zeros([1,layers[i+1]], dtype=tf.float32), dtype=tf.float32)
weights.append(W)
biases.append(b)
return weights, biases
# 前向传播过程
def neural_net(X, weights, biases):
H = X
for l in range(0,len(weights)-1):
W = weights[l]
b = biases[l]
H = tf.tanh(tf.add(tf.matmul(H, W), b))
W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y
# 计算残差项
@tf.function
def f_model(x_t, u_pred, weights, biases):
u_x = tf.gradients(u_pred, x_t)[0][:,0:1]
u_xx = tf.gradients(u_x, x_t)[0][:,0:1]
u_t = tf.gradients(u_pred, x_t)[0][:,1:2]
lambda_1_value = 5e-3 * tf.ones_like(u_pred, dtype=tf.float32) # 参数λ₁
lambda_2_value = tf.constant([-6.0], shape=[u_pred.shape[0], 1]) # 参数λ₂
f_u = u_t - lambda_1_value * u_xx + lambda_2_value * u_pred * (1-u_pred)*(1+u_pred)
return f_u
# 主程序入口
if __name__ == "__main__":
# 数据准备
N_f = 10000 # 残差采样点数
N_b = 100 # 边界条件采样点数
N_i = 100 # 初始条件采样点数
# 随机生成训练数据
X_f = lb + (ub-lb)*np.random.rand(N_f, 2).astype(np.float32)
X_b = np.hstack((lb[0]+(ub[0]-lb[0])*np.random.rand(N_b, 1),
ub[1]*np.ones((N_b, 1))))
X_i = np.hstack((-1*np.ones((N_i, 1)),
lb[1]+(ub[1]-lb[1])*np.random.rand(N_i, 1)))
# 构造模型
weights, biases = initialize_NN(layers)
with tf.GradientTape() as tape:
X_tf = tf.convert_to_tensor(X_f, dtype=tf.float32)
u_pred = neural_net(X_tf, weights, biases)
# 计算损失函数
f_u = f_model(X_tf, u_pred, weights, biases)
loss_residual = tf.reduce_mean(tf.square(f_u))
X_b_tf = tf.convert_to_tensor(X_b, dtype=tf.float32)
u_b_pred = neural_net(X_b_tf, weights, biases)
loss_boundary = tf.reduce_mean(tf.square(u_b_pred)) # 边界条件假设为零
X_i_tf = tf.convert_to_tensor(X_i, dtype=tf.float32)
u_i_pred = neural_net(X_i_tf, weights, biases)
exact_solution_at_initial_time = ... # 替换为初始条件的具体表达式
loss_initial = tf.reduce_mean(tf.square(u_i_pred - exact_solution_at_initial_time))
total_loss = loss_residual + loss_boundary + loss_initial
grads = tape.gradient(total_loss, [*weights, *biases])
optimizer.apply_gradients(zip(grads, [*weights, *biases]))
```
上述代码实现了PINN的核心逻辑,用于求解Allen-Cahn方程[^2]。它定义了一个具有多个隐藏层的前馈神经网络,并利用自动微分计算梯度以满足方程中的空间导数和时间导数关系。
---
### 关键概念解释
1. **神经网络架构**
神经网络被用来近似未知函数 \( u(x, t) \),其中输入是位置 \( x \) 和时间 \( t \),输出是对应的函数值。这里采用了三层隐含层,每层包含50个神经元[^3]。
2. **损失函数构建**
总体损失由三个部分组成:
- 来自PDE本身的残差损失 \( L_{\text{residual}} \);
- 边界条件损失 \( L_{\text{boundary}} \);
- 初始条件损失 \( L_{\text{initial}} \)。
这些损失共同指导网络的学习过程,使其既符合数据又满足物理规律[^4]。
3. **优化策略**
TensorFlow 的 `GradientTape` 被用来记录并计算梯度,随后应用 Adam 或其他优化器更新网络参数。
---