自助法和经验似然方法·第一篇,理论入门

自助法和经验似然方法系列文章

自助法和经验似然方法·第一篇,理论入门

Bootstrap and Empirical Likelihood

作者: 周迈教授, 个人主页

整理: 杨一帆

我们用不太严格但平实的语言从一个侧面讲述自助法(Bootstrap)和经验似然方法(Empirical Likelihood)的异同。

系列看点:

  1. Empirical Likelihood 构造置信区间的方法
  2. 介绍关于Empirical Likelihood 的 Wilks 定理

问题设定

给定随机样本 x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn 我们假定它是从总体 F 0 ( ⋅ ) F_0(\cdot) F0() 抽样得来。我们不假定总体 F 0 F_0 F0 属于某个参数分布族,所以这是一个非参数模型。 另外又有一个我们感兴趣的(有限维)统计量 T ( x 1 , x 2 , ⋯   , x n ) T(x_1, x_2, \cdots, x_n) T(x1,x2,,xn) 简单记为 T ( X ) T(X) T(X) 。 我们不妨先假定它是一维的。 例如,可以想像 T ( X ) = 1 n ∑ x i T(X)= \frac{1}{n} \sum x_i T(X)=n1xi

下面我们仔细分析,比较 Bootstrap 和 Empirical Likelihood 如何做基于 T ( X ) T(X) T(X) 的置信区间。 这里的我们关心的参数是 E [ T ( X ) ] = T ( F 0 ) \mathbf{E}[T(X)]= T(F_0) E[T(X)]=T(F0) .

! ⚠ Bootstrap方法的细分比较多而且在统计学习里面被广泛使用,但在深度学习大行其道的今天,其抽样(本)计算的特性(计算复杂较高),加之大部分深度学习任务只关心预测不关心检验的特性,导致其用得远不如Dropout(Hinton 2012)这种方法多。我们这里讨论的生存分析数据是低维的(欧氏空间下),所以不去考虑Dropout估计置信区间的事情,而且这两者不兼容(residual bootstrap情况下)。从(Zhu and Laptev,2017)汇报的情况看[1],Dropout构建置信区间区间应该也不成问题。但尚无研究在这上面做文章[2]

Bootstrap

Bootstrap的思路很简单,对样本抽样,然后利用多轮抽样得到的样本,计算统计量。

一个思维试验

请添加图片描述

Chicken or the egg: Illustration from Tacuina sanitatis, 14th century

策略一: 如果我们可以得到更多从总体 F 0 F_0 F0 抽样得来的样本 x n + 1 , ⋯   , x m x_{n+1}, \cdots, x_m xn+1,,xm ,那么不难用模拟(比如MC)得到 T ( X ) T(X) T(X) 的近似分布,那么只要一遍又一遍的重复此操作,使用新的 x 观察值来计算新的 T ( x ) T(x) T(x) , 然后用大数定理就可以得出一个“足够好”的分布估计。但是我们只有 x 1 , ⋯   , x n x_1, \cdots, x_n x1,,xn , 没有 F 0 F_0 F0 。采用上述策略会陷入一个讨论是否“先有蛋(分布)先有鸡(样本)”的问题。大多数情形下,此路不通或者实现很复杂。

! ⚠ “足够好的”细节定义,可以是DL距离或者其它距离足够小,这里不影响阅读。

另一方面,因为"样本是总体的一个忠实反映", 既然不能从总体抽样,那我们从它的 “忠实反映” 来抽!这相当于 从 F ^ n \hat F_n F^n 中抽样。 这里 F ^ n \hat F_n F^n 是基于 x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn的经验分布。而众所周知, F ^ n \hat F_n F^n F 0 F_0 F0的一个很好的估计,于是用 F ^ n \hat F_n F^n来估计统计泛函也很正常。

“统计泛函” T ( F ) T(F) T(F) 可以简单理解成分布 F F F的函数。

形象的说,我们可以考虑先有鸡(数据)再有蛋(分布估计),然后再有更多的鸡(数据),然后观察这些新蛋的性质。即我们有了“策略二”。

策略二:把 F ^ n \hat F_n F^n 看成固定的分布, 从这里面抽大小为n 的随机样本 y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn 即所谓 Bootstrap样本。 由于 F ^ n \hat F_n F^n F 0 F_0 F0 很接近, 此时可以认为: $ \sqrt n , [ T(y_1, y_2, \cdots, y_n) - T(\hat F_n) ] ~ \sim ~ \sqrt n , [ T(x_1, x_2, \cdots, x_n) -T(F_0)].~~~~~~~~~~[1] $

其中 “~” 理解为分布很接近

! ⚠ 左边的分布中,把 F ^ n \hat F_n F^n看成是固定的分布。在那里只有 y j y_j yj是随机的。

如果我们有 T ( X ) T(X) T(X)的 方差估计 V ( X ) V(X) V(X), (例如, 当 T ( X ) = 1 / n ∑ x i T(X)= 1/n \sum x_i T(X)=1/nxi 时, 有 V ( X ) = 1 / ( n − 1 ) ∑ ( x i − x ˉ ) 2 V(X)=1/(n-1) \sum (x_i - \bar x)^2 V(X)=1/(n1)(xixˉ)2 ) 我们应该有

$ \sqrt n , \frac{ T(y_1, y_2, \cdots, y_n) - T(\hat F_n) }{\sqrt {V(Y)}} ~ \sim ~ \sqrt n , \frac{ T(x_1, x_2, \cdots, x_n) -T(F_0)}{ \sqrt {V(X)}}~~~~~~~~~~~[2]$

也有人简单的说

T ( y 1 , y 2 , ⋯   , y n )   ∼   T ( x 1 , x 2 , ⋯   , x n )             [ 3 ] T(y_1, y_2, \cdots, y_n) ~ \sim ~ T(x_1, x_2, \cdots, x_n)~~~~~~~~~~~[3] T(y1,y2,,yn)  T(x1,x2,,xn)           [3]

我们不在这儿深入讨论这些逼近说法的好坏/异同/差别。 我们主要看如何产生 y 1 , y 2 , ⋯   , y n y_1, y_2, \cdots, y_n y1,y2,,yn

最后, 我们需要的是[3]右边的分布,这里需要借助[3]左边的分布,这个是可以模拟出来的。 当然,左右两边 “很接近” 即 [1] 或 [2]。这个事实需要证明,也已经被许多人证明了。

用左边的分布来逼近右边的分布的方法就是我们主要要介绍的Bootstrap方法。

有了分布, 就可以计算置信区间以及更多的统计泛函。 比如, 如果 [2] 成立,并且假设我们可以通过模拟得到,对于左边的分布下式成立:

P ( a < n   T ( y 1 , ⋯   , y n ) − T ( F ^ n ) V ( Y ) < b ) = 0.90 P \left( a< \sqrt n \, \frac{T(y_1, \cdots, y_n) - T(\hat F_n)}{\sqrt{V(Y)}} <b \right) = 0.90 P(a<n V(Y) T(y1,,yn)T(F^n)<b)=0.90

那么, 近似的就有:

P ( a < n   T ( x 1 , ⋯   , x n ) − T ( F 0 ) V ( X ) < b ) ≈ 0.90 P \left( a< \sqrt n \, \frac{T(x_1, \cdots, x_n) - T(F_0)}{\sqrt{V(X)}} <b \right) \approx 0.90 P(a<n V(X) T(x1,,xn)T(F0)<b)0.90

这就可以导出 T ( F 0 ) T(F_0) T(F0) 的一个 置信区间。

[To be continued…]

参考

  1. ^Lingxue Zhu and Nikolay Laptev. “Deep and confident prediction for time series at uber”. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE. 2017, pp. 103–110.
  2. ^Wiegrebe S, Kopper P, Sonabend R, Bender A. Deep Learning for Survival Analysis: A Review. arXiv preprint arXiv:2305.14961. 2023 May 24.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值