逆元、扩展欧几里得算法、高斯消元

1、定义:若整数 b,m 互质,并且对于任意的整数 a,如果满足 b|a(整除),则存在一个整数 x,使得 a/b≡a*x(modm),则称 x 为 b 的模 m 乘法逆元,记为 b^(−1)(modm)。

2、b 存在乘法逆元的充要条件是 b 与模数 m 互质。当模数 m 为质数时,b^(m−2 )即为 b 的乘法逆元。
性质1:b*b^(-1)==1(modm)。

ACWing876. 快速幂求逆元

题意:给定 n 组 ai,pi,其中 pi 是质数,求 ai 模 pi 的乘法逆元,若逆元不存在则输出 impossible。
思路;根据逆元性质,a*a^(-1)==1(modp),因为p是质数,由费马定理a^(p-1)==1(modp),所以有a*a^(p-2)==1(modp),所以要求的就是a^(p-2)。当且仅当a与p互质时有解(否则会有a%p==0,导致答案是0,不可能同余1)。

#include<iostream>
using namespace std;
typedef long long ll;
ll res;
ll quick_mod(int a,int k,int p)
{
	res=1;
	while(k)
	{
		if(k&1) res=(ll)res*a%p;
		a=(ll)a*a%p;
		k=k>>1;
	}
	return res;
}
int main()
{
	int t,a,p;
	cin>>t;
	while(t--)
	{
		res=0;
		cin>>a>>p;
		res=quick_mod(a,p-2,p);
		if(a%p) 
			cout<<res<<endl;
		else 
			cout<<"impossible"<<endl;
	}
	return 0;
}

扩展欧几里得算法

1、裴蜀定理:对于任意正整数a,b,一定存在非零整数x,y,使得ax+by=gcd(a,b)
0和任何数的最大公约数都是那个数

ACWing 877. 扩展欧几里得算法
题意:给定 n 对正整数 ai,bi,对于每对数,求出一组 xi,yi,使其满足 ai×xi+bi×yi=gcd(ai,bi)。
 

#include<iostream>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
	if(b==0) 
	{
		x=1,y=0;
		return a;
	}
	int d=exgcd(b,a%b,y,x);//d就是a,b的最大公因数
	y-=a/b*x;
	return d;
}
int main()
{
	int n;
	scanf("%d",&n);
	while(n--)
	{
		int a,b,x,y;
		scanf("%d%d",&a,&b);
		exgcd(a,b,x,y);
		printf("%d %d\n",x,y);
	}
}

ACWing 878. 线性同余方程

题意:求出一个x,使a*x≡b(modm),如果无解则输出 impossible。
思路:a*x==b(mod m)→a*x==m*y+b,即ax-my=b,于是ax+my`=b(y,y`求出来的y值都是可以的,只需要a,b是正整数),利用扩展欧几里得算法求出x的值,再将x=x*b/d即是答案。另d=gcd(a,m),无解的情况是当b%d==1,即当b不是d的倍数时,原方程无解,由裴蜀定理可知。

#include<iostream>
using namespace std;
typedef long long ll;
int exgcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x=1,y=0;
		return a;
	}
	int d=exgcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}
int main()
{
	int n,a,b,m;
	int x,y;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d%d%d",&a,&b,&m);
		int d=exgcd(a,m,x,y);
		if(b%d)
			printf("impossible\n");
		else
			printf("%lld\n",(ll)x*b/d%m);
	}
	return 0;
}

高斯消元

ACWing 883. 高斯消元解线性方程组

思路:步骤:枚举每一列:①找到该列绝对值最大的一行;②将改行换到最上面;
③将改行第一个数化为1;④将该行下面所有行的第c列化为0。

#include<iostream>
#include<cmath>
using namespace std;
const double eps=1e-6;
const int N=110;
double a[N][N];
int n;
int gauss()
{
	int c,r;
	for(c=0,r=0;c<n;c++)//枚举每一列
	{
		int t=r;
		for(int i=r;i<n;i++)//找到该列绝对值最大的一行
			if(fabs(a[t][c])<fabs(a[i][c]))
				t=i;
		if(fabs(a[t][c])<eps) //当前列全为0
			continue;
		for(int i=0;i<n+1;i++)//将该行换到前面
			swap(a[t][i],a[r][i]);
		for(int i=n;i>=c;i--)//将改行第一个数变为1
			a[r][i]/=a[r][c];
		for(int i=r+1;i<n;i++)//将下面所有行的第c列消为0
			if(fabs(a[i][c])>eps)
				for(int j=n;j>=c;j--)
					a[i][j]-=a[r][j]*a[i][c];//将最上面一行每一列的系数乘当前行第一列的系数
		r++;
	}
	if(r<n)
	{
		for(int i=r;i<n;i++)
			if(fabs(a[i][c])>eps)//最后这个系数不为0,说明无解。因为0!=0错误
				return -1;//无解
		return 1;//无穷多组解
	}
	for(int i=n-1;i>=0;i--)
	{
		for(int j=i+1;j<n;j++)
			a[i][n]-=a[i][j]*a[j][n];//用下面所有行的每一列的系数来消去当前行其他的变量,只剩下xi
	}
	return 0;//唯一解
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		for(int j=0;j<n+1;j++)
			scanf("%lf",&a[i][j]);
	int t=gauss();
	if(t==0)
		for(int i=0;i<n;i++)
		{
		    if(fabs(a[i][n])<eps) a[i][n]=0;//去掉输出-0.00的情况
			printf("%.2lf\n",a[i][n]);
		}
	else if(t==-1) printf("No solution\n");
	else printf("Infinite group solutions\n");
	return 0;
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值