图网络与药物研发【图信号处理和图神经网络】

这里提到的图位移算子不太理解,可以去看看提到的文献[3][4],图滤波器的拉普拉斯矩阵多项式展开也不太理解

  • 图滤波器是对图信号的频谱中各个频率分量( λ k \lambda_k λk)的强度( x ~ k \tilde x_k x~k)的强度+±-的操作,空域上看是通过对一阶子图的多步迭代来完成,频域上看是将图信号转换到频域,调节强度再转回空域,整个转换过程有明确公式指导

为什么 H x ~ 1 H_{\tilde x_1} Hx~1显然是一个图位移算子?

  • 两个图信号 x 1 , x 2 x_1,x_2 x1,x2的卷积等价于图的滤波操作 x 1 ∗ x 2 = H x ~ 1 x 2 x_1*x_2=H_{\tilde x_1}x_2 x1x2=Hx~1x2
  • GCN层是 X ′ = σ ( L ~ s y m X W ) X'=\sigma(\tilde L_{sym}XW) X=σ(L~symXW) L ~ s y m \tilde L_{sym} L~sym是一阶子图的滤波器,卷积局部连接(一层卷积共用一套参数 W W W L ~ s y m \tilde L_{sym} L~sym只是用于邻居的聚合,没有学习参数),权值共享。 X W XW XW是对节点属性的学习, L ~ s y m ( X W ) \tilde L_{sym}(XW) L~sym(XW)是对图结构信息的学习,将图的表示学习和任务学习以及结构信息和属性信息一起进行端对端的优化

L ~ s y m = ( D + I ) − 1 2 ( A + I ) ( D + I ) − 1 2 = D ~ A ~ D ~ \tilde L_{sym}=(D+I)^{-\frac{1}{2}}(A+I)(D+I)^{-\frac{1}{2}}=\tilde D\tilde A\tilde D L~sym=(D+I)21(A+I)(D+I)21=D~A~D~ D ~ i i = ∑ j A ~ i j \tilde D_{ii}=\sum_j \tilde A_{ij} D~ii=jA~ij),这里不理解为什么符号这么用,对 A ~ \tilde A A~的归一化,但却记做字母 L ~ s y m \tilde L_{sym} L~sym,实际上 L ~ s y m \tilde L_{sym} L~sym L s y m L_{sym} Lsym好像关系不大( L s y m = D − 1 2 L D − 1 2 L_{sym}=D^{-\frac{1}{2}}LD^{-\frac{1}{2}} Lsym=D21LD21),另外, A + I A+I A+I相当于对每个节点进行了自连接,每个节点的度加1

  • 过平滑问题:
    • 频域角度看: L ~ s y m = V ( I − Λ ~ ) V T \tilde L_{sym}=V(I-\tilde \Lambda)V^T L~sym=V(IΛ~)VT,其中 Λ \Lambda Λ是特征值 λ ~ \tilde \lambda λ~ [ 0 , 2 ) [0,2) [0,2)的对角阵, L ~ s y m \tilde L_{sym} L~sym的频率响应函数是 p ( λ ) = 1 − λ ~ p(\lambda)=1-\tilde \lambda p(λ)=1λ~,对频谱每个信号不断连乘小于1的数使得频率不断变小而产生过平滑,这样节点的表示向量,即图信号会趋于一致
    • 空域角度看:每个节点的信息通过不断聚合一阶子图,每个节点的感受野(聚合半径)不断扩大,当感受野扩大到全图时,每个节点都相当于收敛到全图节点,这与节点是无关的,因此大大降低局部网络结构的多样性
    • 解决过平滑可以用跳跃连接的聚合过程和重新分配权重的方法
  • GraphSAGE从两个方面改进GCN:训练方式改为以节点为中心的mini batch,聚合邻居的方法改变(max),这样适合做归纳学习,对于新出现的节点数据,只需要遍历得到 k k k阶子图就可以代入预测而不需要重新迭代,使得工业应用价值提高
    • 子图的节点数指数增长,大规模图数据无法计算,算法设置超参数 S k S_k Sk,每个节点在第 k k k层采样的一阶邻居数不能超过 S k S_k Sk,采样方法可以是均匀采样或根据实际情况选择其他方法
    • 聚合邻居的方法应该满足下面的条件,可以是加和算子或聚合算子:
      • 对节点数量自适应,即对于任意的 n n n个节点, A g g ( v 1 , v 2 , … , v n ) Agg(v_1,v_2,\dots,v_n) Agg(v1,v2,,vn),无论 n n n取多少,输出 A g g ( v 1 , v 2 , … , v n ) Agg(v_1,v_2,\dots,v_n) Agg(v1,v2,,vn)的维度都恒定
      • 聚合方法有排列不变性,如这篇文章中提到的,对于任意两个排列顺序, A g g ( v 1 , v 2 , … , v n ) = A g g ( v 2 , v n , … , v 1 ) Agg(v_1,v_2,\dots,v_n)=Agg(v_2,v_n,\dots,v_1) Agg(v1,v2,,vn)=Agg(v2,vn,,v1)
  • GAT层将query设为当前中心节点的特征向量,key-value是一阶邻居的特征向量,计算中心节点和一阶邻居的相似度 e i j e_{ij} eij,再都用 s o f t m a x softmax softmax归一化到 [ 0 , 1 ] [0,1] [0,1]内记作 α i j \alpha_{ij} αij,当前节点的新特征就是 h i ′ = σ ( ∑ v j ∈ N ( v i ) α i j W h i ) h'_i=\sigma(\sum_{v_{j}\in N(v_i)}\alpha_{ij}Wh_i) hi=σ(vjN(vi)αijWhi),GAT也能进行归纳学习

书中提到GCN的权重矩阵 M M M是拉普拉斯矩阵,就是说 L ~ s y m = A ~ ⊙ M = A ~ ⊙ L \tilde L_{sym}=\tilde A\odot M=\tilde A\odot L L~sym=A~M=A~L ?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值