图论-03

03-图的连通性

注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》

顶连通度

  • uv-割集:给定 G = ( V , E ) G=(V,E) G=(V,E)中一对不相邻的顶点 u , v ∈ V ( G ) , u ≠ v u,v\in V(G),u\neq v u,vV(G),u=v。若 S ⊆ V ( G ) − u , v S\subseteq V(G)-{u,v} SV(G)u,v使得 u u u v v v G − S G-S GS中不连通,则称S是一个uv-顶割集,简称为uv-割集,含顶点最少的uv-割集称为最小uv-割集
  • uv-连通度:最小uv-割集的顶点数记为== c ( u , v ) c(u,v) c(u,v)==,称为u与v在G中的顶连通度,简称为uv-连通度
  • 割集:给定连通简单图 G = ( V , E ) G=(V,E) G=(V,E),以及 S ⊂ V ( G ) S\subset V(G) SV(G),若 G − S G-S GS不连通,则称S是G的顶割集,简称割集
  • k-顶割集:一个割集中有 k k k个元素
  • 顶连通度(连通度):含顶点数最少的割集为最小割集,其中的顶点数记为== κ ( G ) \kappa(G) κ(G)==,称为 G G G顶连通度(连通度)
  • 约定: κ ( K n ) = n − 1 , κ ( 非 连 通 图 ) = 0 \kappa(K_n)=n-1,\kappa(非连通图)=0 κ(Kn)=n1,κ()=0
  • k-连通的:若 κ ( G ) ≥ k \kappa(G)\geq k κ(G)k,则称 G G Gk-连通的
  • k-连通图:若 κ ( G ) = k \kappa(G)= k κ(G)=k,则称 G G Gk-连通图
  • 显然,若 S S S G G G的顶割集,则 S S S也是 G G G的uv-顶割集,即图G的任意一个顶割集,一定是某两个顶点之间的顶割集,故对于非完全图G, κ ( G ) = min ⁡ { c ( u , v ) ∣ u , v ∈ V ( G ) , u ≠ v , u v ∉ E ( G ) } \kappa(G)=\min\{c(u,v)|u,v\in V(G),u\neq v,uv\notin E(G)\} κ(G)=min{c(u,v)u,vV(G),u=v,uv/E(G)}
  • 无公共内顶的uv-轨道 P ( u , v ) P(u,v) P(u,v) Q ( u , v ) Q(u,v) Q(u,v)除了 u u u v v v之外,没有其他公共点,称 P ( u , v ) P(u,v) P(u,v) Q ( u , v ) Q(u,v) Q(u,v)无公共内顶的uv-轨道,记两两无公共内顶的uv-轨道的最大数目为== p ( u , v ) p(u,v) p(u,v)==
  • Menger定理:给定 G G G u u u v v v不相邻的两点, p ( u , v ) = c ( u , v ) p(u,v)=c(u,v) p(u,v)=c(u,v)
    • 推论: min ⁡ { p ( u , v ) ∣ u , v ∈ V ( G ) , u ≠ v , u v ∉ E ( G ) } = min ⁡ { c ( u , v ) ∣ u , v ∈ V ( G ) , u ≠ v , u v ∉ E ( G ) } \min\{p(u,v)|u,v\in V(G),u\neq v,uv\notin E(G)\}=\min\{c(u,v)|u,v\in V(G),u\neq v,uv\notin E(G)\} min{p(u,v)u,vV(G),u=v,uv/E(G)}=min{c(u,v)u,vV(G),u=v,uv/E(G)}
  • Whitney定理:任给简单图 G G G,都有 κ ( G ) = m i n { p ( u , v ) ∣ u , v ∈ V ( G ) , u ≠ v } \kappa(G)=min\{p(u,v)|u,v\in V(G),u\neq v\} κ(G)=min{p(u,v)u,vV(G),u=v}

扇形定理

  • k-扇形:给定简单图 G G G x ∈ V ( G ) , Y ⊆ V ( G ) − X x\in V(G),Y\subseteq V(G)-{X} xV(G),YV(G)X ∣ Y ∣ ≥ k |Y| \geq k Yk,一组 k k k条起点为 x x x,终点为 Y Y Y k k k个不同的顶点,且除了 x x x之外无公共顶点的轨道称为从 x x x Y Y Yk-扇形
  • (X,Y)-轨道:轨道的两个点分属于 X X X Y Y Y,而中间顶点不属于 X ∪ Y X\cup Y XY
  • 引理:假设 G G G是k-连通图,在 G G G中增加一个新的顶点 y y y,并且在 G G G中任意选取至少 k k k个顶点,将 y y y与这些选取的顶点各连一条边,得到的图记为 H H H,则 H H H也是k-连通图
    • 推论:假设简单图 G G G是k-连通图, X , Y X,Y X,Y是图 G G G的两个顶点子集, ∣ X ∣ ≥ k , ∣ Y ∣ ≥ k 且 X ∩ Y = ∅ |X|\geq k,|Y| \geq k且X\cap Y=\varnothing Xk,YkXY=,则 G G G中存在 k k k条无公共顶点的 ( X , Y ) − 轨 道 (X,Y)-轨道 (X,Y)
  • 扇形定理:假设简单图 G G G是k-连通图, x ∈ V ( G ) , Y ⊆ V ( G ) − x 且 ∣ Y ∣ ≥ k x\in V(G),Y\subseteq V(G)-{x}且|Y|\geq k xV(G),YV(G)xYk,则 G G G中存在从 x x x Y Y Y的k-扇形
  • Dirac定理:设 S S S是k-连通图 G G G中的 k k k元顶点子集, k ≥ 2 k\geq 2 k2,则 G G G中存在一个圈 C C C,使得 S S S中所有的顶点都在 C C C上。

边连通度

  • uv-边割集:给定 G = ( V , E ) G=(V,E) G=(V,E)中一对顶点 u , v ∈ V ( G ) , u ≠ v u,v\in V(G),u\neq v u,vV(G),u=v。若 E ′ ⊆ E ( G ) E'\subseteq E(G) EE(G)使得 u u u v v v G − E ′ G-E' GE中不连通,则称 E ′ E' E是一个uv-边割集,含边数最少的uv-边割集称为最小uv-边割集
  • uv-边连通度:最小uv-边割集的边数数记为== c ′ ( u , v ) c'(u,v) c(u,v)==,称为u与v在G中的边连通度,简称为uv-边连通度
  • 边割集:给定连通简单图 G = ( V , E ) G=(V,E) G=(V,E),以及 E ′ ⊂ E ( G ) E'\subset E(G) EE(G),若 G − E ′ G-E' GE不连通,则称E’是G的边割集
  • k-边割集:一个边割集中有 k k k条边
  • 边连通度:含边数数最少的边割集为最小边割集,其中的边数记为== κ ′ ( G ) \kappa'(G) κ(G)==,称为 G G G边连通度
  • 约定: κ ′ ( K n ) = n − 1 , κ ′ ( 非 连 通 图 ) = 0 \kappa'(K_n)=n-1,\kappa'(非连通图)=0 κ(Kn)=n1,κ()=0
  • k-边连通的:若 κ ′ ( G ) ≥ k \kappa'(G)\geq k κ(G)k,则称 G G Gk-连通的
  • k-边连通图:若 κ ′ ( G ) = k \kappa'(G)= k κ(G)=k,则称 G G Gk-连通图
  • 无公共边的uv-轨道 P ( u , v ) P(u,v) P(u,v) Q ( u , v ) Q(u,v) Q(u,v)没有公共边,称 P ( u , v ) P(u,v) P(u,v) Q ( u , v ) Q(u,v) Q(u,v)无公共边的uv-轨道,记两两无公共边的uv-轨道的最大数目为== p ′ ( u , v ) p'(u,v) p(u,v)==
  • Merge定理:给定 G G G中两个顶点 u u u, v v v p ′ ( u , v ) = c ′ ( u , v ) p'(u,v)=c'(u,v) p(u,v)=c(u,v)
  • 定理 G G G是简单图,则有 κ ( G ) ≤ κ ′ ( G ) ≤ δ ( G ) \kappa(G)\leq\kappa'(G)\leq\delta(G) κ(G)κ(G)δ(G)

割顶、桥与块

  • 割顶:给定简单图 G = ( V ( G ) , E ( G ) ) G=(V(G),E(G)) G=(V(G),E(G)),若存在顶点 v v v,使得 G − v G-v Gv不连通,即 { v } \{v\} {v}是割集,则称 v v v G G G割顶 κ ( G ) = 1 \kappa(G)=1 κ(G)=1
  • 割边(桥):给定简单图 G = ( V ( G ) , E ( G ) ) G=(V(G),E(G)) G=(V(G),E(G)),若存在边 e e e,使得 G − e G-e Ge不连通,即 { e } \{e\} {e}是边割集,则称 e e e G G G割边(桥) κ ′ ( G ) = 1 \kappa'(G)=1 κ(G)=1
  • :没有割顶的简单图 G G G称为,若 G G G不是块,则G的成块的极大子图称为G的块
  • 割点定理:设 G G G是连通图, v ∈ V ( G ) v\in V(G) vV(G),则下列命题等价
    • v v v G G G的割顶
    • 存在与 v v v不同的两个顶点 u , w ∈ V ( G ) − { v } u,w\in V(G)-\{v\} u,wV(G){v},使得 v v v在每一条从 u u u w w w的轨道上
    • 存在 V ( G ) − { v } V(G)-\{v\} V(G){v}的一个划分 V ( G ) − { v } = U ∪ W , U ∩ W = ∅ , U ≠ ∅ , W ≠ ∅ V(G)-\{v\}=U\cup W,U\cap W = \varnothing,U\neq\varnothing,W\neq\varnothing V(G){v}=UW,UW=,U=,W=,使得任给 u ∈ U , w ∈ W u\in U,w\in W uU,wW v v v在每一条从 u u u w w w的轨道上
  • 割边定理:设 G G G是连通图, e ∈ E ( G ) e\in E(G) eE(G),则下列命题等价
    • e e e G G G的割边
    • e e e不再 G G G的任一圈上
    • 存在 u , w ∈ V ( G ) u,w\in V(G) u,wV(G),使得 e e e在每一条从 u u u w w w的轨道上
    • 存在 V ( G ) V(G) V(G)的一个划分 V ( G ) = U ∪ W , U ∩ W = ∅ , U ≠ ∅ , W ≠ ∅ V(G)=U\cup W,U\cap W = \varnothing,U\neq\varnothing,W\neq\varnothing V(G)=UW,UW=,U=,W=,使得任给 u ∈ U , w ∈ W u\in U,w\in W uU,wW e e e在每一条从 u u u w w w的轨道上
  • 块定理:设 G G G是连通图, v ( G ) ≥ 3 v(G)\geq 3 v(G)3,则下述命题等价
    • G是块
    • 任给 u , v ∈ V ( G ) , u ≠ v u,v\in V(G),u\neq v u,vV(G)u=v u u u v v v在G的同一个圈上
    • 任给 u ∈ V ( G ) , e ∈ E ( G ) u\in V(G),e\in E(G) uV(G)eE(G) u u u e e e在G的同一个圈上
    • 任给 e 1 , e 2 ∈ E ( G ) e_1,e_2\in E(G) e1e2E(G) e 1 e_1 e1 e 2 e_2 e2在G的同一个圈上
    • 任给 u , v ∈ V ( G ) , u ≠ v , e ∈ E ( G ) u,v\in V(G),u\neq v,e\in E(G) u,vV(G),u=v,eE(G),存在连接 u u u v v v的轨道 P ( u , v ) P(u,v) P(u,v),使得 e e e P ( u , v ) P(u,v) P(u,v)上,即 e ∈ E ( P ( u , v ) ) e\in E(P(u,v)) eE(P(u,v))
    • 任给三个不同的顶点 u , v , w ∈ V ( G ) u,v,w\in V(G) u,v,wV(G),存在连接 u u u v v v的轨道 P ( u , v ) P(u,v) P(u,v),使得 w w w在轨道 P ( u , v ) P(u,v) P(u,v)
    • 任给三个不同的顶点 u , v , w ∈ V ( G ) u,v,w\in V(G) u,v,wV(G),存在连接 u u u v v v的轨道 P ( u , v ) P(u,v) P(u,v),使得 w w w不在轨道 P ( u , v ) P(u,v) P(u,v)
  • 一些结论
    • G G G是具有 m m m条边的 n n n阶连通图,则 κ ≤ └ 2 m n ┘ \kappa \leq \llcorner\frac{2m}{n}\lrcorner κn2m
    • G G G n n n阶简单图,若 δ ( G ) ≥ └ n 2 ┘ \delta(G)\geq\llcorner\frac{n}{2}\lrcorner δ(G)2n,则 G G G必连通
    • G G G n n n阶简单图,对于正整数 k < n k<n k<n,若 δ ( G ) ≥ n + k − 2 2 \delta(G)\geq\frac{n+k-2}{2} δ(G)2n+k2,则 G G G k k k连通的
    • G G G n n n阶简单图,若 δ ( G ) ≥ └ n 2 ┘ \delta(G)\geq\llcorner\frac{n}{2}\lrcorner δ(G)2n,则 κ ′ ( G ) = δ ( G ) \kappa'(G)=\delta(G) κ(G)=δ(G)

可靠通信网的构造

  • 所考虑问题:对一个赋权图 G G G,试确定 G G G的一个具有最小权的 k k k连通生成子图。
    • k = 1 k=1 k=1,就是求最小生成树
    • k > 1 k>1 k>1时,为解决难题,若 G G G是完全图,各边的权均为1的特殊情况,可解,只需求边数最少的 n n n k k k连通图,此为本节讨论。
  • f ( k , n ) f(k,n) f(k,n)表示在所在 n n n k k k连通图中边数最少者的边数,由上节结论1得 k ≤ └ 2 m n ┘ k\leq\llcorner\frac{2m}{n}\lrcorner kn2m,推的 f ( k , n ) ≥ ┌ k n 2 ┐ f(k,n)\geq\ulcorner\frac{kn}{2}\urcorner f(k,n)2kn,所以若能构造出边数达到 ┌ 2 k n ┐ \ulcorner\frac{2k}{n}\urcorner n2k n n n k k k连通图,记这类图为 K k , n K_{k,n} Kk,n,则边数将已达到最少。
  • 构造方法如下(Harary提出),设 V ( H k , n ) = { 0 , 1 , 2 , ⋯   , n − 1 } V(H_{k,n})=\{0,1,2,\cdots,n-1\} V(Hk,n)={0,1,2,,n1}
    • k k k为偶,设 k = 2 r k=2r k=2r,令 0 与 1 , 2 , ⋯   , r 0与1,2,\cdots,r 01,2,,r连线, 1 与 2 , 3 , ⋯   , r + 1 1与2,3,\cdots,r+1 12,3,,r+1连线, ⋯ \cdots n − 1 与 0 , 1 , ⋯   , r − 1 n-1与0,1,\cdots,r-1 n10,1,,r1连线。
    • k = 2 r + 1 , n 为 偶 k=2r+1,n为偶 k=2r+1,n,先做 H 2 r , n H_{2r,n} H2r,n,再在 i i i ( i + n 2 ) (i+\frac{n}{2}) (i+2n)间添加边 i ( i + n 2 ) ( 1 ≤ i ≤ n 2 ) i(i+\frac{n}{2})(1\leq i\leq \frac{n}{2}) i(i+2n)(1i2n)
    • k = 2 r + 1 , n 为 奇 k=2r+1,n为奇 k=2r+1,n,先做 H 2 r , n H_{2r,n} H2r,n,再在 0 和 n − 1 2 0和\frac{n-1}{2} 02n1 0 和 n + 1 2 0和\frac{n+1}{2} 02n+1 i i i ( i + n + 1 2 ) (i+\frac{n+1}{2}) (i+2n+1)间添加边 i ( i + n 2 ) ( 1 ≤ i ≤ n − 1 2 ) i(i+\frac{n}{2})(1\leq i\leq \frac{n-1}{2}) i(i+2n)(1i2n1)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值