图论-10

10-图矩阵与图空间
注:所写主要参考为许胤龙《图论导引》,因觉得此书所写不合理,故附参考张先迪《图论及其应用》

线性空间简介

  • 线性空间:给定数域 F F F,非空集合 V V V V V V中元素通常称为向量
    • V V V中定义了一种二元运算,称为向量加法,记作 + + +,即对任意 α , β \alpha,\beta α,β,都按某一法则对应于 V V V内惟一确定的一个向量 α + β \alpha+\beta α+β,称为 α \alpha α β \beta β
    • F F F V V V的元素间定义了一种运算,称为数量乘法,即对 V V V中任意元素 α \alpha α F F F中任意元素 k k k,都按某一法则对应 V V V内惟一确定的一个元素 k α k\alpha kα,称为 k k k α \alpha α
    • 满足四种加法运算律和四种数乘运算律,则称 V V V F F F上的一个线性空间
  • 线性相关/线性无关:对于一组向量 v 1 , v 2 , ⋯   , v n ∈ V v_1,v_2,\cdots,v_n\in V v1,v2,,vnV,如果存在一组不全为零的系数 k 1 , k 2 , ⋯   , k n ∈ F k_1,k_2,\cdots,k_n\in F k1,k2,,knF,使得 k 1 v 1 + k 2 v 2 + ⋯ + k n v n = 0 k_1v_1+k_2v_2+\cdots+k_nv_n=0 k1v1+k2v2++knvn=0,那么称该组向量线性相关,反之,线性无关
  • :如果存在一组向量 v 1 , v 2 , ⋯   , v n ∈ V v_1,v_2,\cdots,v_n\in V v1,v2,,vnV v 1 , v 2 , ⋯ v n v_1,v_2,\cdots v_n v1,v2,vn线性无关,而且 V V V中任意一个向量都可以表示成 v 1 , v 2 , ⋯   , v n v_1,v_2,\cdots,v_n v1,v2,,vn的线性组合,称 v 1 , v 2 , ⋯   , v n v_1,v_2,\cdots,v_n v1,v2,,vn为向量空间 V V V的一组
  • 维数:一组基中向量的个数称为维数
  • 线性子空间:设 V V V是数域 F F F上的线性空间, V ′ ⊆ V V'\subseteq V VV V ′ ≠ ∅ V'\neq\varnothing V=,若 V ′ V' V也是 F F F上的线性空间,则称 V ′ V' V V V V线性子空间
  • 定理:设 V V V是数域 F F F上的线性空间, V ′ ⊆ V V'\subseteq V VV V ′ ≠ ∅ V'\neq\varnothing V=,若 V ′ V' V中任意两个向量的线性组合仍属于 V ′ V' V,即任给 α , β ∈ V ′ \alpha,\beta\in V' α,βV,任给 k , l ∈ F k,l\in F k,lF,都有 k α + l β ∈ V ′ k\alpha+l\beta\in V' kα+lβV,则 V ′ V' V V V V的线性子空间

图的空间

  • 边空间:给定图 G = ( V , E ) G=(V,E) G=(V,E),设 E = { e 1 , e 2 , ⋯   , e ϵ } E=\{e_1,e_2,\cdots,e_\epsilon\} E={e1,e2,,eϵ},我们将 G G G所有的边子集对应的向量作为元素,构成下面的向量集合 ϵ ( G ) = { E ′ 对 应 的 向 量 ∣ E ′ ⊆ E } \epsilon(G)=\{E'对应的向量|E'\subseteq E\} ϵ(G)={EEE}
    • ϵ ( G ) \epsilon(G) ϵ(G)中定义加法 ( i i , i 2 , ⋯   , i ϵ ) + ( j 1 , j 2 , ⋯   , j ϵ ) = ( i 1 + j 1 , i 2 + j 2 , ⋯   , i ϵ + j ϵ ) (i_i,i_2,\cdots,i_\epsilon)+(j_1,j_2,\cdots,j_\epsilon)=(i_1+j_1,i_2+j_2,\cdots,i_\epsilon+j_\epsilon) (ii,i2,,iϵ)+(j1,j2,,jϵ)=(i1+j1,i2+j2,,iϵ+jϵ),每个分量的加法为 F 2 F_2 F2中加法
    • ϵ ( G ) \epsilon(G) ϵ(G)中向量与 F 2 F_2 F2中元素定义数乘 1 × ( i 1 , i 2 , ⋯   , i ϵ ) = ( i 1 , i 2 , ⋯   , i ϵ ) 1\times(i_1,i_2,\cdots,i_\epsilon)=(i_1,i_2,\cdots,i_\epsilon) 1×(i1,i2,,iϵ)=(i1,i2,,iϵ) 0 × ( i 1 , i 2 , ⋯   , i ϵ ) = ( 0 , 0 , ⋯   , 0 ) 0\times(i_1,i_2,\cdots,i_\epsilon)=(0,0,\cdots,0) 0×(i1,i2,,iϵ)=(0,0,,0)
    • 易验证 ϵ ( G ) \epsilon(G) ϵ(G) F 2 F_2 F2上的线性空间,称为 G G G边空间
  • 圈向量:给定图 G = ( V , E ) G=(V,E) G=(V,E) G G G中一些无公共边的圈之并对应于 G G G的一个边集合,这样的边集合在 ϵ ( G ) \epsilon(G) ϵ(G)中对应的边向量称为圈向量
  • 圈空间:所有的圈向量和零向量构成集合 C ( G ) C(G) C(G),为 ϵ ( G ) \epsilon(G) ϵ(G)的子空间,称为圈空间
  • 定理 C ( G ) C(G) C(G) ϵ ( G ) \epsilon(G) ϵ(G)的线性子空间
  • 基本圈组:给定连通图 G G G,取 G G G的一棵生成树,任取一条边 e ∈ E ( G ) − E ( T ) e\in E(G)-E(T) eE(G)E(T),则 T + e T+e T+e上有唯一一个圈,设 e 1 , e 2 , ⋯   , e ϵ − v + 1 e_1,e_2,\cdots,e_{\epsilon-v+1} e1,e2,,eϵv+1 G G G中所有不在 T T T上的边,分别记 T + e 1 , T + e 2 , ⋯   , T + e ϵ − v + 1 T+e_1,T+e_2,\cdots,T+e_{\epsilon-v+1} T+e1,T+e2,,T+eϵv+1上所含的圈 C 1 , C 2 , ⋯   , C ϵ − v + 1 C_1,C_2,\cdots,C_{\epsilon-v+1} C1,C2,,Cϵv+1,我们称 C 1 , C 2 , ⋯   , C ϵ − v + 1 C_1,C_2,\cdots,C_{\epsilon-v+1} C1,C2,,Cϵv+1 G G G基本圈组
  • 定理:给定连通图 G G G的一棵生成树 T T T,其对应的基本圈组 C 1 , C 2 , ⋯   , C ϵ − v + 1 C_1,C_2,\cdots,C_{\epsilon-v+1} C1,C2,,Cϵv+1 C ( G ) C(G) C(G)的一组基, C ( G ) C(G) C(G)的维数为 ϵ − v + 1 \epsilon-v+1 ϵv+1
  • 断集:给定图 G = ( V ( G ) , E ( G ) ) G=(V(G),E(G)) G=(V(G),E(G)),取 V ′ ⊂ V V'\subset V VV,使得 V ′ ≠ ∅ V'\neq\varnothing V= V ′ ‾ = V − V ′ ≠ ∅ \overline{V'}=V-V'\neq\varnothing V=VV=,用 ( V ′ , V ′ ‾ ) (V',\overline{V'}) (V,V)表示 E ( G ) E(G) E(G)中一个端点在 V ′ V' V中,另一个端点在 V ′ ‾ \overline{V'} V中的边子集。我么称 ( V ′ , V ′ ‾ ) (V',\overline{V'}) (V,V) G G G的一个断集
  • 断集向量:断集在 ϵ ( G ) \epsilon(G) ϵ(G)中对应的向量称为断集向量
  • 断集空间:将图 G G G的所有断集向量与零向量组成的集合记为 S ( G ) S(G) S(G),即 S ( G ) S(G) S(G) ϵ ( G ) \epsilon(G) ϵ(G)的线性子空间,称之为断集空间
  • 定理 S ( G ) S(G) S(G) ϵ ( G ) \epsilon(G) ϵ(G)的线性子空间
  • 割集:若 E ′ ∈ E ( G ) E'\in E(G) EE(G)满足 G − E ′ G-E' GE不连通,且任给 E ′ E' E的真子集 E ′ ′ E'' E G − E ′ ′ G-E'' GE不连通,则称 E ′ E' E为图 G G G割集
  • 基本割集组:给定连通图 G G G的生成树 T T T,则 G G G的任一割集必含树 T T T上的一条边,设 e 1 , e 2 , ⋯   , e v − 1 e_1,e_2,\cdots,e_{v-1} e1,e2,,ev1为树 T T T上所有的边,记 G G G中含边 e 1 , e 2 , ⋯   , e v − 1 e_1,e_2,\cdots,e_{v-1} e1,e2,,ev1的割集分别为 S 1 , S 2 , ⋯   , S v − 1 S_1,S_2,\cdots,S_{v-1} S1,S2,,Sv1 S 1 , S 2 , ⋯   , S v − 1 S_1,S_2,\cdots,S_{v-1} S1,S2,,Sv1是断集空间的一组基,称之为基本割集组
  • 定理:给定连通图 G G G的一棵生成树 T T T,其对应的基本割集组 S 1 , S 2 , ⋯   , S v − 1 S_1,S_2,\cdots,S_{v-1} S1,S2,,Sv1 S ( G ) S(G) S(G)的一组基, S ( G ) S(G) S(G)的维数为 v − 1 v-1 v1
  • 定理:任给连通图 G G G的圈向量 C ∈ C ( G ) C\in C(G) CC(G)和断集向量 S ∈ S ( G ) S\in S(G) SS(G) C C C S S S的内积 ( C , S ) = 0 (C,S)=0 (C,S)=0,其中的运算是在 F 2 F_2 F2中进行的
  • 基本圈矩阵:将所有基本圈向量作为横向量构成一个矩阵
  • 基本割集矩阵:将所有基本割集向量作为行向量构成一个矩阵

邻接矩阵

  • 邻接矩阵:给定无向图 G = ( V , E ) G=(V,E) G=(V,E),设 V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv},定义 G G G邻接矩阵 A ( G ) = ( a i j ) v × v A(G)=(a_{ij})_{v\times v} A(G)=(aij)v×v,其中 a i j a_{ij} aij G G G中顶点 v i v_i vi v j v_j vj之间的边数
  • 定理:设 G = ( V , E ) G=(V,E) G=(V,E)是无向图, V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv},其邻接矩阵为 A ( G ) = ( a i j ) v × v A(G)=(a_{ij})_{v\times v} A(G)=(aij)v×v,记 A n ( G ) = ( a i j ( n ) ) v × v A^n(G)=(a_{ij}^{(n)})_{v\times v} An(G)=(aij(n))v×v,则 a i j ( n ) a_{ij}^{(n)} aij(n)为图 G G G中从 v i v_i vi v j v_j vj长为 n n n的路径数
  • 有向图的邻接矩阵:给定有向图 G = ( V , E ) G=(V,E) G=(V,E),设 V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv},定义 G G G邻接矩阵 A ( G ) = ( a i j ) v × v A(G)=(a_{ij})_{v\times v} A(G)=(aij)v×v,其中 a i j a_{ij} aij G G G中以 v i v_i vi为尾, v j v_j vj为头的边数
  • 定理:设 G = ( V , E ) G=(V,E) G=(V,E)是有向图, V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv},其邻接矩阵为 A ( G ) = ( a i j ) v × v A(G)=(a_{ij})_{v\times v} A(G)=(aij)v×v,记 A n ( G ) = ( a i j ( n ) ) v × v A^n(G)=(a_{ij}^{(n)})_{v\times v} An(G)=(aij(n))v×v,则 a i j ( n ) a_{ij}^{(n)} aij(n)为图 G G G中从 v i v_i vi v j v_j vj长为 n n n的有向路径数
  • W a r s h a l l Warshall Warshall算法
    • 输入:有向图 D D D的邻接矩阵 A ( D ) = ( a i j ) v × v A(D)=(a_{ij})_{v\times v} A(D)=(aij)v×v
    • 输出:可达性矩阵 R ( D ) = ( r i j ) v × v R(D)=(r_{ij})_{v\times v} R(D)=(rij)v×v,若 v i v_i vi G G G中可达 v j v_j vj,则 r i j = 1 r_{ij}=1 rij=1,否则 r i j = 0 r_{ij}=0 rij=0
    • 初始化:对所有 1 ≤ i ≤ v , r i i ( 0 ) = 0 1\leq i\leq v,r_{ii}^{(0)}=0 1iv,rii(0)=0,对所有 1 ≤ i , j ≤ v 1\leq i,j\leq v 1i,jv,若 a i j > 0 a_{ij}>0 aij>0,令 r i j ( 0 ) = 1 r_{ij}^{(0)}=1 rij(0)=1,否则 r i j ( 0 ) = 0 r_{ij}^{(0)}=0 rij(0)=0,令 l = 0 l=0 l=0
    • 对所有的 1 ≤ i ≤ v 1\leq i\leq v 1iv,若 r i ( l + 1 ) ( l ) r_{i(l+1)}^{(l)} ri(l+1)(l)=1,则对所有的 1 ≤ j ≤ v 1\leq j\leq v 1jv,令 r i j ( l + 1 ) = r i j ( l ) ∨ r ( l + 1 ) j ( l ) r_{ij}^{(l+1)}=r_{ij}^{(l)}\vee r_{(l+1)j}^{(l)} rij(l+1)=rij(l)r(l+1)j(l) l = l + 1 l=l+1 l=l+1;否则,令 r i j ( l + 1 ) = r i j ( l ) r_{ij}^{(l+1)}=r_{ij}^{(l)} rij(l+1)=rij(l) l = l + 1 l=l+1 l=l+1,直至 l = v l=v l=v,算法停止
  • 引理:对 0 ≤ l ≤ v 0\leq l\leq v 0lv W a r s h a l l Warshall Warshall算法满足
    • r i j ( l ) = 1 r_{ij}^{(l)}=1 rij(l)=1,当且仅当 D D D中存在从 v i v_i vi v j v_j vj的有向路径,且该有向路径上除了 v i , v j v_i,v_j vi,vj外,其余顶点都在顶点子集 { v 1 , v 2 , ⋯   , v l } \{v_1,v_2,\cdots,v_l\} {v1,v2,,vl}
    • r i i ( l ) = 1 r_{ii}^{(l)}=1 rii(l)=1,当且仅当 v i v_i vi D D D中一个有向回路上,且该有向回路上除了 v i v_i vi外,其余顶点都在顶点子集 { v 1 , v 2 , ⋯   , v l } \{v_1,v_2,\cdots,v_l\} {v1,v2,,vl}

关联矩阵

  • 关联矩阵:给定无环无向图 G = ( V , E ) G=(V,E) G=(V,E),设 V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv} E = { e 1 , e 2 , ⋯   , e ϵ } E=\{e_1,e_2,\cdots,e_\epsilon\} E={e1,e2,,eϵ},定义 G G G的关联矩阵为 B ( G ) = ( b i j ) v × ϵ B(G)=(b_{ij})_{v\times \epsilon} B(G)=(bij)v×ϵ b i j b_{ij} bij定义为 b i j = { 1 , v i 与 e j 关 联 0 , v i 与 e j 不 关 联 b_{ij}=\begin{cases}1, & v_i与e_j关联\\ 0, & v_i与e_j不关联\end{cases} bij={1,0,viejviej
  • 基本关联矩阵:称删去 B ( G ) B(G) B(G)中任意一行后所得到的矩阵为 G G G基本关联矩阵,记为 B f ( G ) B_f(G) Bf(G)
  • 定理:设 G G G是连通图,则有 r ( B ( G ) ) = r ( B f ( G ) ) = v − 1 r(B(G))=r(B_f(G))=v-1 r(B(G))=r(Bf(G))=v1
    • 推论:设 G G G是简单图,则有 r ( B ( G ) ) = r ( B f ( G ) ) = v − w r(B(G))=r(B_f(G))=v-w r(B(G))=r(Bf(G))=vw
  • 定理:设 G G G是连通图, e i 1 , e i 2 , ⋯   , e v ( G ) − 1 ∈ E ( G ) e_{i_1},e_{i_2},\cdots,e_{v(G)-1}\in E(G) ei1,ei2,,ev(G)1E(G),则 G [ e i 1 , e i 2 , ⋯   , e v ( G ) − 1 ] G[e_{i_1},e_{i_2},\cdots,e_{v(G)-1}] G[ei1,ei2,,ev(G)1] G G G的生成树,等价于 B f ( G ) B_f(G) Bf(G)中由第 i 1 , i 2 , ⋯   , i v ( G ) − 1 i_1,i_2,\cdots,i_{v(G)-1} i1,i2,,iv(G)1列构成的子矩阵为满秩矩阵
  • 有向图关联矩阵:给定有向图 G = ( V , E ) G=(V,E) G=(V,E),设 V = { v 1 , v 2 , ⋯   , v v } V=\{v_1,v_2,\cdots,v_v\} V={v1,v2,,vv},有向边集合 E = { e 1 , e 2 , ⋯   , e ϵ } E=\{e_1,e_2,\cdots,e_\epsilon\} E={e1,e2,,eϵ},定义 G G G的关联矩阵为 B ( G ) = ( b i j ) v × ϵ B(G)=(b_{ij})_{v\times \epsilon} B(G)=(bij)v×ϵ b i j b_{ij} bij定义为 b i j = { − 1 , v i 是 e j 的 头 1 , v i 是 e j 的 尾 0 , v i 与 e j 不 关 联 b_{ij}=\begin{cases}-1, & v_i是e_j的头\\ 1, & v_i是e_j的尾\\0,&v_i与e_j不关联\end{cases} bij=1,1,0,viejviejviej
  • 定理:设 G G G是连通有向图,则有 r ( B ( G ) ) = r ( B f ( G ) ) = v − 1 r(B(G))=r(B_f(G))=v-1 r(B(G))=r(Bf(G))=v1
    • 推论:设 G G G是有向图,则有 r ( B ( G ) ) = r ( B f ( G ) ) = v − w r(B(G))=r(B_f(G))=v-w r(B(G))=r(Bf(G))=vw
  • 引理:设 B ( D ) B(D) B(D)是有向图 D D D的关联矩阵, B ′ B' B B ( D ) B(D) B(D)的任意一个子方阵,则有 d e t ( B ′ ) = 0 , − 1 或 1 det(B')=0,-1或1 det(B)=0,11
  • Binet-Cauchy定理:设 A , B A,B A,B分别为一个 m × n m\times n m×n n × m n\times m n×m矩阵,其中 m ≤ n m\leq n mn,则 A A A B B B的积的行列式满足下列公式: d e t ( A × B ) = ∑ 1 ≤ k 1 < k 2 < ⋯ < k m ≤ n d e t ( A ( 12 ⋯ m ; k 1 k 2 ⋯ k m ) ) × d e t ( B ( k 1 k 2 ⋯ k m ; 12 ⋯ m ) ) det(A\times B)=\sum_{1\leq k_1<k_2<\cdots<k_m\leq n}det(A(12\cdots m;k_1k_2\cdots k_m))\times det(B(k_1k_2\cdots k_m;12\cdots m)) det(A×B)=1k1<k2<<kmndet(A(12m;k1k2km))×det(B(k1k2km;12m))
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值